
504  |  Nature  |  Vol 608  |  18 August 2022

Article

A compute-in-memory chip based on
resistive random-access memory

Weier Wan1,2 ✉, Rajkumar Kubendran2,3, Clemens Schaefer4, Sukru Burc Eryilmaz1,
Wenqiang Zhang5, Dabin Wu5, Stephen Deiss2, Priyanka Raina1, He Qian5, Bin Gao5 ✉,
Siddharth Joshi2,4 ✉, Huaqiang Wu5 ✉, H.-S. Philip Wong1 ✉ & Gert Cauwenberghs2 ✉

Realizing increasingly complex artificial intelligence (AI) functionalities directly on
edge devices calls for unprecedented energy efficiency of edge hardware.
Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1
promises to meet such demand by storing AI model weights in dense, analogue and
non-volatile RRAM devices, and by performing AI computation directly within RRAM,
thus eliminating power-hungry data movement between separate compute and
memory2–5. Although recent studies have demonstrated in-memory matrix-vector
multiplication on fully integrated RRAM-CIM hardware6–17, it remains a goal for a
RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to
support diverse models and software-comparable accuracy. Although efficiency,
versatility and accuracy are all indispensable for broad adoption of the technology,
the inter-related trade-offs among them cannot be addressed by isolated
improvements on any single abstraction level of the design. Here, by co-optimizing
across all hierarchies of the design from algorithms and architecture to circuits and
devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers
versatility in reconfiguring CIM cores for diverse model architectures, energy
efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips
across various computational bit-precisions, and inference accuracy comparable to
software models quantized to four-bit weights across various AI tasks, including
accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification,
84.7-percent accuracy on Google speech command recognition20, and a 70-percent
reduction in image-reconstruction error on a Bayesian image-recovery task.

Early research in the area of resistive random-access memory (RRAM)
compute-in-memory (CIM) focused on demonstrating artificial intel-
ligence (AI) functionalities on fabricated RRAM devices while using
off-chip software and hardware to implement essential functionali-
ties such as analogue-to-digital conversion and neuron activations
for a complete system2,3,6,20–27. Although these studies proposed vari-
ous techniques to mitigate the impacts of analogue-related hardware
non-idealities on inference accuracy, the AI benchmark results reported
were often obtained by performing software emulation based on char-
acterized device data3,5,21,24. Such an approach often overestimates
accuracies compared with fully hardware-measured results owing to
incomplete modelling of hardware non-idealities.

More recent studies have demonstrated fully integrated RRAM
complementary metal–oxide–semiconductor (CMOS) chips capable
of performing in-memory matrix-vector multiplication (MVM)6–17.
However, for a RRAM-CIM chip to be broadly adopted in practical
AI applications, it needs to simultaneously deliver high energy effi-
ciency, the flexibility to support diverse AI model architectures and
software-comparable inference accuracy. So far, there has not been

a study aimed at simultaneously improving all these three aspects
of a design. Moreover, AI application-level benchmarks in previous
studies have limited diversity and complexity. None of the studies
have experimentally measured multiple edge AI applications with
complexity matching those in MLPerf Tiny, a commonly used bench-
mark suite for edge AI hardware28. The challenge arises from the
inter-related trade-offs between efficiency, flexibility and accuracy.
The highly-parallel analogue computation within RRAM-CIM archi-
tecture brings superior efficiency, but makes it challenging to realize
the same level of functional flexibility and computational accuracy
as in digital circuits. Meanwhile, attaining algorithmic resiliency to
hardware non-idealities becomes more difficult for more complex AI
tasks owing to using less over-parameterized models on the edge29,30.

To address these challenges, we present NeuRRAM, a 48-core
RRAM-CIM hardware encompassing innovations across the full
stack of the design. (1) At the device level, 3 million RRAM devices
with high analogue programmability are monolithically integrated
with CMOS circuits. (2) At the circuit level, a voltage-mode neuron
circuit supports variable computation bit-precision and activation

https://doi.org/10.1038/s41586-022-04992-8

Received: 27 July 2021

Accepted: 17 June 2022

Published online: 17 August 2022

Open access

 Check for updates

1Stanford University, Stanford, CA, USA. 2University of California San Diego, La Jolla, CA, USA. 3University of Pittsburgh, Pittsburgh, PA, USA. 4University of Notre Dame, Notre Dame, IN, USA.
5Tsinghua University, Beijing, China. ✉e-mail: weierwan@stanford.edu; gaob1@tsinghua.edu.cn; sjoshi2@nd.edu; wuhq@tsinghua.edu.cn; hspwong@stanford.edu; gert@ucsd.edu

https://doi.org/10.1038/s41586-022-04992-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-04992-8&domain=pdf
mailto:weierwan@stanford.edu
mailto:gaob1@tsinghua.edu.cn
mailto:sjoshi2@nd.edu
mailto:wuhq@tsinghua.edu.cn
mailto:hspwong@stanford.edu
mailto:gert@ucsd.edu

Nature  |  Vol 608  |  18 August 2022  |  505

functions while performing analogue-to-digital conversion at low
power consumption and compact-area footprint. (3) At the archi-
tecture level, a bidirectional transposable neurosynaptic array
(TNSA) architecture enables reconfigurability in dataflow direc-
tions with minimal area and energy overheads. (4) At the system
level, 48 CIM cores can perform inference in parallel and supports
various weight-mapping strategies. (5) Finally, at the algorithm
level, various hardware-algorithm co-optimization techniques
mitigate the impact of hardware non-idealities on inference accu-
racy. We report fully hardware-measured inference results for a
range of AI tasks including image classifications using CIFAR-1019
and MNIST18 datasets, Google speech command recognition20
and MNIST image recovery, implemented with diverse AI models
including convolutional neural networks (CNNs)31, long short-term
memory (LSTM)32 and probabilistic graphical models33 (Fig. 1e).
The chip is measured to achieve an energy-delay product (EDP)
lower than previous state-of-the-art RRAM-CIM chips, while it oper-
ates over a range of configurations to suit various AI benchmark
applications (Fig. 1d).

Reconfigurable RRAM-CIM architecture
A NeuRRAM chip consists of 48 CIM cores that can perform computa-
tion in parallel. A core can be selectively turned off through power gat-
ing when not actively used, whereas the model weights are retained by
the non-volatile RRAM devices. Central to each core is a TNSA consisting
of 256 × 256 RRAM cells and 256 CMOS neuron circuits that implement
analogue-to-digital converters (ADCs) and activation functions. Addi-
tional peripheral circuits along the edge provides inference control
and manages RRAM programming.

The TNSA architecture is designed to offer flexible control of dataflow
directions, which is crucial for enabling diverse model architectures with
different dataflow patterns. For instance, in CNNs that are commonly
applied to vision-related tasks, data flows in a single direction through
layers to generate data representations at different abstraction levels; in
LSTMs that are used to process temporal data such as audio signals, data
travel recurrently through the same layer for multiple time steps; in proba-
bilistic graphical models such as a restricted Boltzmann machine (RBM),
probabilistic sampling is performed back and forth between layers until
the network converges to a high-probability state. Besides inference, the
error back-propagation during gradient-descent training of multiple AI
models requires reversing the direction of dataflow through the network.

However, conventional RRAM-CIM architectures are limited to per-
form MVM in a single direction by hardwiring rows and columns of the
RRAM crossbar array to dedicated circuits on the periphery to drive
inputs and measure outputs. Some studies implement reconfigurable
dataflow directions by adding extra hardware, which incurs substantial
energy, latency and area penalties (Extended Data Fig. 2): executing
bidirectional (forwards and backwards) dataflow requires either dupli-
cating power-hungry and area-hungry ADCs at both ends of the RRAM
array11,34 or dedicating a large area to routing both rows and columns
of the array to shared data converters15; the recurrent connections
require writing the outputs to a buffer memory outside of the RRAM
array, and reading them back for the next time-step computation35.

The TNSA architecture realizes dynamic dataflow reconfigurability
with little overhead. Whereas in conventional designs, CMOS peripheral
circuits such as ADCs connect at only one end of the RRAM array, the
TNSA architecture physically interleaves the RRAM weights and the
CMOS neuron circuits, and connects them along the length of both
rows and columns. As shown in Fig. 2e, a TNSA consists of 16 × 16 of

Cross-layer
co-optimization

1

10

100
65 nm (ref. 7)

55 nm (ref. 10)

1 2 3 4
MVM input bit-precision

5 6 7 8

NeuRRAM
130 nm

22 nm (ref. 16)

180 nm (ref. 6)

22 nm (ref. 9)

CNN

LSTM

Car Horse Deer Bird

‘Yes’ ‘No’
‘Up’ ‘Down’…

Visual perception

Audio recognition
……

Recon�gurability

Computation granularity

E
D

P
 (n

or
m

al
iz

ed
)

C
la

ss
i�

ca
tio

n
er

ro
r

(%
)

L2
-r

ec
on

st
ru

ct
io

n
er

ro
r

MNIST
classi�cation

(CNN)

Data-�ow direction

Computation bit-precision

Input/output dynamic range

Diverse model
architectures

Diverse
applications

…

Versatility

1.0

13.0
15.1

1.0

14.3
15.3

1.4

15.7
18.7

0

5

10

15

20

Software model
(4-bit weights)

Chip-measured
results

3

6

9

12

Software model
(3-bit weights)

70%
reduction

a

b

c

d

e

Lo
w

er
 is

 b
et

te
r

Lo
w

er
 is

 b
et

te
r

0

3.89 3.68 3.97

Noisy images: 12.20

Algorithm
Model-driven chip calibration

and chip-driven model
training and �ne-tuning

System
Multi-core parallel operation
and �exible weight mapping

Architecture
Transposable neurosynaptic

array enables versatile
data�ow directions

Circuit
Voltage-mode neuron with
variable computational bit-

precisions and activation functions

Technology
Monolithically integrated

analogue RRAM and CMOS

NeuRRAM chip:
48 cores

3 million RRAM cells

Software
comparable

accuracy

Computational
ef�ciency

CIFAR-10
classi�cation
(ResNet-20)

Voice command
recognition

(LSTM)

Image
recovery
(RBM)

Fig. 1 | Design methodology and main contributions of the NeuRRAM chip.
a, Cross-layer co-optimizations across the full stack of the design enable
NeuRRAM to simultaneously deliver high versatility, computational efficiency
and software-comparable inference accuracy. b, Micrograph of the NeuRRAM
chip. c, Reconfigurability in various aspects of the design enables NeuRRAM to

implement diverse AI models for a wide variety of applications. d, Comparison
of EDP, a commonly used energy-efficiency and performance metric among
recent RRAM-based CIM hardware. e, Fully hardware-measured inference
accuracy on NeuRRAM is comparable to software models quantized to 4-bit
weights across various AI benchmarks.

506  |  Nature  |  Vol 608  |  18 August 2022

Article

such interleaved corelets that are connected by shared bit-lines (BLs)
and word-lines (WLs) along the horizontal direction and source-lines
(SLs) along the vertical direction. Each corelet encloses 16 × 16 RRAM
devices and one neuron circuit. The neuron connects to 1 BL and 1 SL
out of the 16 BLs and the 16 SLs that pass through the corelet, and is
responsible for integrating inputs from all the 256 RRAMs connecting
to the same BL or SL. Sixteen of these RRAMs are within the same corelet
as the neuron; and the other 240 are within the other 15 corelets along

the same row or column. Specifically, Fig. 2f shows that the neuron
within corelet (i, j) connects to the (16i + j)th BL and the (16j + i)th SL.
Such a configuration ensures that each BL or SL connects uniquely to
a neuron, while doing so without duplicating neurons at both ends of
the array, thus saving area and energy.

Moreover, a neuron uses its BL and SL switches for both its input and
output: it not only receives the analogue MVM output coming from BL
or SL through the switches but also sends the converted digital results

Fig. 2 | Reconfigurable architecture of the NeuRRAM chip. a, Multi-core
architecture of the NeuRRAM chip, and various ways, labelled (1) to (6), to map
neural-network layers onto CIM cores. b, Zoomed-in chip micrograph on a
single CIM core. c, A cross-sectional transmission electron microscopy image
showing the layer stack of the monolithically integrated RRAM and CMOS.
d, Block diagram of a CIM core. A core consists of a TNSA, drivers for BLs, WLs,
and SLs, registers that store MVM inputs and outputs, a LFSR pseudo-random
number generator (PRNG), and a controller. During the MVM input stage, the
drivers convert register inputs (REG) and PRNG inputs (PRN) to analogue
voltages and send them to TNSA; during the MVM output stage, the drivers
pass digital outputs from neurons back to registers through REG. e, The

architecture of a TNSA consists of 16 × 16 corelets with interleaving RRAM
weights and CMOS neurons. Each neuron integrates inputs from 256 RRAMs
connecting to the same horizontal BL or vertical SL. f, Each corelet contains
16 × 16 RRAMs and 1 neuron. The neuron connects to 1 of the 16 BLs and 1 of the
16 SLs that pass through the corelet, and can use a BL and a SL for both its input
and output. g, The TNSA can be dynamically configured for MVM in forwards,
backwards or recurrent directions. h, Differential input and differential output
schemes used to implement real-valued weights during forwards and
backwards MVMs. Weights are encoded as the differential conductance
between two RRAM cells on adjacent rows (G+ and G-).

Neural network model

NeuRRAM chip (48 cores)

TNSATNSA

M5

RRAM

CMOS access
transistors

M4

M3

M2

M1

B
L/

W
L

d
riv

er
s

B
L/

W
L

re
gi

st
er

s

SL drivers

100 μm

1 μm

C
on

tr
ol

le
r

SL registers and LFSR

8
ro

w
s

6 columns

RRAM weights CMOS neuron

W1

W2

W3

0 15 16 31

a

d

g h

e
f

b c

–

Layer
weight
mapper

a

SL[0:255]

B
L[

0:
25

5]

R
E

G
_B

L[
0.

25
5]

W
L[

0:
25

5]

B
L/

W
L

d
riv

er
s

B
L/

W
L

re
gi

st
er

s

REG_SL[0:255] PRN[0:255]

(6)

TNSA
256 CMOS neurons and

65,536 RRAM cells

SL drivers

SL registers

Controller

LFSR PRNG

Forwards MVM Backwards MVM Recurrent MVM
Differential input

Vref + Vread

Vref + Vread

Vref – Vread

G+

G+

G–

G–

BL
driver

Neuron

Neuron

Neuron

Differential outputSum over total 256 rows Sum over total 256 rows

S
um

 o
ve

r
to

ta
l 2

56
 c

ol
um

ns

SL drivers

B
L/

W
L

d
riv

er
s

B
L

re
gi

st
er

s

B
L/

W
L

d
riv

er
s

B
L

re
gi

st
er

s

B
L/

W
L

d
riv

er
s

B
L

re
gi

st
er

s

SL registers

SL drivers

SL registers

SL drivers

SL registers

Neuron Neuron Neuron

(5)

(4)

(3)

(2)

(1)

b

Combine layers
to one core

Rearrange to

one core for

higher utilization

Divide to multiple

cores for parallel

execution

1 layer → 1 core

Duplicate to
multiple cores for
higher throughput

TiN

HfOx
TiN

Thermal enhancement
layer

50 nm

Corelet
(0, 0)

(0, 1) (0, 15)

(1, 15)

(15, 15)

(1, 1)(1, 0)

(15, 1)(15, 0)

0

15

16

31

240

255

240 255

BL 16j

BL 16j + k

BL 16j + 15

WL 16j + 15

BL switch

S
L

16
k

+
 1

5

S
L

16
k

+
 j

S
L

16
k SL

switch
Neuron

(j, k)

WL 16j + k

WL 16j

BL
driver

SL
driver

a

a

b

b

Nature  |  Vol 608  |  18 August 2022  |  507

to peripheral registers through the same switches. By configuring
which switch to use during the input and output stages of the neuron,
we can realize various MVM dataflow directions. Figure 2g shows the
forwards, backwards and recurrent MVMs enabled by the TNSA. To
implement forwards MVM (BL to SL), during the input stage, input
pulses are applied to the BLs through the BL drivers, get weighted by the
RRAMs and enter the neuron through its SL switch; during the output
stage, the neuron sends the converted digital outputs to SL registers
through its SL switch; to implement recurrent MVM (BL to BL), the neu-
ron instead receives input through its SL switch and sends the digital
output back to the BL registers through its BL switch.

Weights of most AI models take both positive and negative values. We
encode each weight as difference of conductance between two RRAM
cells on adjacent rows along the same column (Fig. 2h). The forwards
MVM is performed using a differential input scheme, where BL drivers
send input voltage pulses with opposite polarities to adjacent BLs. The
backwards MVM is performed using a differential output scheme, where
we digitally subtract outputs from neurons connecting to adjacent BLs
after neurons finish analogue-to-digital conversions.

To maximize throughput of AI inference on 48 CIM cores, we imple-
ment a broad selection of weight-mapping strategies that allow us to
exploit both model parallelism and data parallelism (Fig. 2a) through
multi-core parallel MVMs. Using a CNN as an example, to maximize
data parallelism, we duplicate the weights of the most computation-
ally intensive layers (early convolutional layers) to multiple cores for
parallel inference on multiple data; to maximize model parallelism,
we map different convolutional layers to different cores and perform
parallel inference in a pipelined fashion. Meanwhile, we divide the lay-
ers whose weight dimensions exceed the RRAM array size into multiple
segments and assign them to multiple cores for parallel execution.
A more detailed description of the weight-mapping strategies is pro-
vided in Methods. The intermediate data buffers and partial-sum accu-
mulators are implemented by a field-programmable gate array (FPGA)
integrated on the same board as the NeuRRAM chip. Although these
digital peripheral modules are not the focus of this study, they will even-
tually need to be integrated within the same chip in production-ready
RRAM-CIM hardware.

Efficient voltage-mode neuron circuit
Figure 1d and Extended Data Table 1 show that the NeuRRAM chip
achieves 1.6-times to 2.3-times lower EDP and 7-times to 13-times
higher computational density (measured by throughput per million
of RRAMs) at various MVM input and output bit-precisions than previ-
ous state-of-the-art RRAM-based CIM chips, despite being fabricated
at an older technology node17–27,36. The reported energy and delay are
measured for performing an MVM with a 256 × 256 weight matrix. It is
noted that these numbers and those reported in previous RRAM-CIM
work represent the peak energy efficiency achieved when the array
utilization is 100% and does not account for energy spent on interme-
diate data transfer. Network-on-chip and program scheduling need
to be carefully designed to achieve good end-to-end application-level
energy efficiency37,38.

Key to the NeuRRAM’s EDP improvement is a novel in-memory MVM
output-sensing scheme. The conventional approach is to use voltage
as input, and measure the current as the results based on Ohm’s law
(Fig. 3a). Such a current-mode-sensing scheme cannot fully exploit
the high-parallelism nature of CIM. First, simultaneously turning on
multiple rows leads to a large array current. Sinking the large current
requires peripheral circuits to use large transistors, whose area needs to
be amortized by time-multiplexing between multiple columns, which
limits ‘column parallelism’. Second, MVM results produced by differ-
ent neural-network layers have drastically different dynamic ranges
(Fig. 3c). Optimizing ADCs across such a wide dynamic range is difficult.
To equalize the dynamic range, designs typically activate a fraction

of input wires every cycle to compute a partial sum, and thus require
multiple cycles to complete an MVM, which limits ‘row parallelism’.

NeuRRAM improves computation parallelism and energy efficiency
by virtue of a neuron circuit implementing a voltage-mode sensing
scheme. The neuron performs analogue-to-digital conversion of the
MVM outputs by directly sensing the settled open-circuit voltage on the
BL or SL line capacitance39 (Fig. 3b): voltage inputs are driven on the BLs
whereas the SLs are kept floating, or vice versa, depending on the MVM
direction. WLs are activated to start the MVM operation. The voltage on
the output line settles to the weighted average of the voltages driven on
the input lines, where the weights are the RRAM conductances. Upon
deactivating the WLs, the output is sampled by transferring the charge
on the output line to the neuron sampling capacitor (Csample in Fig. 3d).
The neuron then accumulates this charge onto an integration capacitor
(Cinteg) for subsequent analogue-to-digital conversion.

Such voltage-mode sensing obviates the need for power-hungry and
area-hungry peripheral circuits to sink large current while clamping
voltage, improving energy and area efficiency and eliminating output
time-multiplexing. Meanwhile, the weight normalization owing to the
conductance weighting in the voltage output (Fig. 3c) results in an
automatic output dynamic range normalization for different weight
matrices. Therefore, MVMs with different weight dimensions can all
be completed within a single cycle, which significantly improves com-
putational throughput. To eliminate the normalization factor from
the final results, we pre-compute its value and multiply it back to the
digital outputs from the ADC.

Our voltage-mode neuron supports MVM with 1-bit to 8-bit inputs
and 1-bit to 10-bit outputs. The multi-bit input is realized in a bit-serial
fashion where charge is sampled and integrated onto Cinteg for 2n−1 cycles
for the nth least significant bit (LSB) (Fig. 3e). For MVM inputs greater
than 4 bits, we break the bit sequence into two segments, compute
MVM for each segment separately and digitally perform a shift-and-add
to obtain the final results (Fig. 3f). Such a two-phase input scheme
improves energy efficiency and overcomes voltage headroom clipping
at high-input precisions.

The multi-bit output is generated through a binary search process
(Fig. 3g). Every cycle, neurons add or subtract CsampleVdecr amount of
charge from Cinteg, where Vdecr is a bias voltage shared by all neurons.
Neurons then compare the total charge on Cinteg with a fixed threshold
voltage Vref to generate a 1-bit output. From the most significant bit (MSB)
to the least significant bit (LSB), Vdecr is halved every cycle. Compared
with other ADC architectures that implement a binary search, our ADC
scheme eliminates the residue amplifier of an algorithmic ADC, and does
not require an individual DAC for each ADC to generate reference volt-
ages like a successive approximation register (SAR) ADC40. Instead, our
ADC scheme allows sharing a single digital-to-analogue converter (DAC)
across all neurons to amortize the DAC area, leading to a more compact
design. The multi-bit MVM is validated by comparing ideal and measured
results, as shown in Fig. 3h and Extended Data Fig. 5. More details on the
multi-bit input and output implementation can be found in Methods.

The neuron can also be reconfigured to directly implement Rectified
Linear Unit (ReLU)/sigmoid/tanh as activations when needed. In addi-
tion, it supports probabilistic sampling for stochastic activation func-
tions by injecting pseudo-random noise generated by a linear-feedback
shift register (LFSR) block into the neuron integrator. All the neuron
circuit operations are performed by dynamically configuring a single
amplifier in the neuron as either an integrator or a comparator during
different phases of operations, as detailed in Methods. This results in
a more compact design than other work that merges ADC and neuron
activation functions within the same module12,13. Although most exist-
ing CIM designs use time-multiplexed ADCs for multiple rows and col-
umns to amortize the ADC area, the compactness of our neuron circuit
allows us to dedicate a neuron for each pair of BL and SL, and tightly
interleave the neuron with RRAM devices within the TNSA architecture,
as can be seen in Extended Data Fig. 11d.

508  |  Nature  |  Vol 608  |  18 August 2022

Article

Hardware-algorithm co-optimizations
The innovations on the chip architecture and circuit design bring
superior efficiency and reconfigurability to NeuRRAM. To complete
the story, we must ensure that AI inference accuracy can be preserved
under various circuit and device non-idealities3,41. We developed a set of
hardware-algorithm co-optimization techniques that allow NeuRRAM
to deliver software-comparable accuracy across diverse AI applications.
Importantly, all the AI benchmark results presented in this paper are
obtained entirely from hardware measurements on complete datasets.
Although most previous efforts (with a few exceptions8,17) have reported

benchmark results using a mixture of hardware characterization and
software simulation, for example, emulate the array-level MVM pro-
cess in software using measured device characteristics3,5,21,24, such an
approach often fails to model the complete set of non-idealities exist-
ing in realistic hardware. As shown in Fig. 4a, these non-idealities may
include (1) Voltage drop on input wires (Rwire), (2) on RRAM array driv-
ers (Rdriver) and (3) on crossbar wires (e.g. BL resistance RBL), (4) limited
RRAM programming resolution, (5) RRAM conductance relaxation41, (6)
capacitive coupling from simultaneously switching array wires, and (7)
limited ADC resolution and dynamic range. Our experiments show that
omitting certain non-idealities in simulation leads to over-optimistic

Fig. 3 | Voltage-mode MVM with multi-bit inputs and outputs.
 a, Conventional current-mode-sensing scheme needs to activate a small
fraction of total N rows each cycle to limit total current ISL and time-multiplex
ADCs across multiple columns to amortize ADC area, thus limiting its
computational parallelism. b, Voltage-mode sensing employed by NeuRRAM
can activate all the rows and all the columns in a single cycle, enabling
higher parallelism. c, MVM output distribution from a CNN layer and from
an LSTM layer (weights normalized to the same range). Voltage-mode
sensing intrinsically normalizes wide variation in output dynamic range.
d, Schematic of the voltage-mode neuron circuit, where BLsel, SLsel, Sample,
Integ, Reset, Latch, Decr, and WR are digital signals controlling state of the
switches. e, Sample waveforms to perform MVM and 4-bit signed inputs

digital-to-analogue conversion. WLs are pulsed once per magnitude-bit;
sampling and integration are performed 2n−1 times for the nth LSB. f, Two-phase
MVM: for input precision greater than 4 bits, inputs are divided into a MSB
segment and a LSB segment. MVMs and ADCs are performed separately for
each segment, followed by a shift-and-add to obtain final outputs. g, Sample
waveforms to perform 5-bit signed outputs analogue-to-digital conversion.
The sign-bit is first generated by a comparison operation. The magnitude-bits
are generated through a binary search process realized by adding/subtracting
charge on Cinteg. From MSB to LSB, added/subtracted charge is halved every bit.
h, Chip-measured 64 × 64 MVM outputs versus ideal outputs under 4-bit input
and 6-bit output.

Voltage-mode sensing

Current mode:

4-bit signed inputs
MSB LSB

5

–2

Iout,j = ΣiViGij Vout,j

Output current (μA) Output voltage (V)

MVM output dynamic
range varies with models Normalize dynamic range

Voltage mode:

Current-mode sensing

=

a

c

b

0 1 1 0 0 1

0 1 1 0 0 1

0 1 0 0 1 1 0 1 1 1 0 1 0

0 1 0 1 0 1 1 1

+

1 1

Magnitude bitsSign-bit

100

d e

f g h

0
BL 0

SL 0 SL 1

WL 0

BL 1

WL 1

BL 0
WL 0

BL 1
WL 1

BL N

WL N

WL

GND

GND
GND
GND

Vread

Vref

Vref + Vread

Vref – Vread

BL

Vread

Vref

Ampli�er

Csample

17 fF

Cinteg

Vref

Vdecr + GND

Vref + Vdecr Vref + ½Vdecr

Vref – ½Vdecr

Vref + ¼Vdecr

Vref – ¼Vdecr

Vdecr+

Vdecr–

Vinteg

Vlatch

Vref – Vdecr

Vref

Vdecr – VDD

104 fF

WR

ISL

1

Multiplexor

Voltage clamp

Current mirror

Current ADC

1 0 1

0 –1 0

−400 −200 0 200 400

LSTM

−0.2 −0.1 0 0.1 0.2

−10.0 −7.5 −5.0 −2.5 0 2.5 5.0 7.5 10.0
Expected inner product output

−10.0

−7.5

−5.0

−2.5

0

2.5

5.0

7.5

10.0

M
ea

su
re

d
 in

ne
r

p
ro

d
uc

t
ou

tp
ut

0

1

–1

WL N – 2
WL N – 1

WL N

Turn on a fraction
of rows each cycle

Turn on all the
rows at the
same time

Dedicated ADC
for each column

Peripheral circuits
time-multiplexed by

many columns

SL 0 SL 1

CSL

CSL

CSL

Csample

e–
e–

e–

Voltage
ADC

Voltage
ADC

CNN
LSTM
CNN

ΣiViGij

ΣiGij

SL

SLsel

6-bit MAC input

8-bit neuron output

8-bit MVM output

5-bit neuron output

3 MSBs 3 LSBs

R
eset

B
L

sel

Loop

Loop

Latch

Latch

D
ec

r
D

ec
r

Sample

Phase 1
MVM

Phase 2
MVM

Integ

BL 0

BL 1

BL 2

BL 3

WLs

Sample

Sample

Integ

0 V

Loop/latch/
decr

Integ

r.m.s.e = 0.519

6-b input, 8-b output

Vref + Vread

Vref – Vread Vref – Vread

Vref + Vread

Vref

Vref

Vref

Vref

Nature  |  Vol 608  |  18 August 2022  |  509

prediction of inference accuracy. For example, the third and the fourth
bars in Fig. 5a show a 2.32% accuracy difference between simulation
and measurement for CIFAR-10 classification19, whereas the simulation
accounts for only non-idealities (5) and (7), which are what previous
studies most often modelled5,21.

Our hardware-algorithm co-optimization approach includes three
main techniques: (1) model-driven chip calibration, (2) noise-resilient
neural-network training and analogue weight programming, and (3)
chip-in-the-loop progressive model fine-tuning. Model-driven chip
calibration uses the real model weights and input data to optimize

Fig. 4 | Hardware-algorithm co-optimization techniques to improve
NeuRRAM inference accuracy. a, Various device and circuit non-idealities
(labelled (1) to (7)) of in-memory MVM. b, Model-driven chip calibration
technique to search for optimal chip operating conditions and record offsets
for subsequent cancellation. c, Noise-resilient neural-network training
technique to train the model with noise injection. The noise distribution is

obtained from hardware characterization. The trained weights are
programmed to the continuous analogue conductance of RRAMs without
quantization as shown by the continuous diagonal band at the bottom. d, Chip-
in-the-loop progressive fine-tuning technique: weights are progressively
mapped onto the chip one layer at a time. The hardware-measured outputs
from layer n are used as inputs to fine-tune the remaining layers n + 1 to N.

−4 −2 0

0.6 0.7 0.8 0.9 1.0 1.1 1.2

2 4
Ideal output

Input voltage (V)

−4

−2

0

2

4

ADC 1
ADC 2

0.3 0.5 0.7 0.9 1.1 1.3 1.5

0
0 10 20

Conductance (μG)

Conductance (μG)

30 40

0 10 20 30 40

500

1,000

1,500

2,000

0

500

1,000

1,500

2,000

0 10 20 30 40
0

10

20

30

40

a

b c d

During programming

Model-driven chip calibration

Inject noises with
characterized

distribution

Weights already
programmed

on chip

Use the measured
outputs from layer n to

�ne-tune the weights
of the rest of the layers

(not on chip yet)

Program the weights of
layer n, and run inference

Noise-resilient neural-network training and
analogue weight programming

Chip-in-the-loop progressive model �ne-tuning

Step n Step n + 1

Layer 1 Layer 1

Layer n – 1 Layer n – 1

Layer n + 1

Layer n + 2

Layer n

Layer n + 1

Layer n + 2

Layer n

Layer N Layer N

Quantize

W1

W2

W3

Quantize

Quantize

Initialize chip
operating conditions

Yes

No

Perform MVM using
training-set data

Record operating
conditions and

offsets to be used
during inference

Output fully utilizing
and not saturating ADC

input swing?

Adjust operating
conditions

Initial MVM output
distribution

Program analogue
conductance into
RRAMs

After calibration and
offset compensation

Core N
Core 1

(1) Rwire

(2) Rdriver (3) RBL

(4) Limited programming
resolution

(6) ADC output offsets owing to
capacitive coupling from WLs

(7) ADC discretization
and limited input swing

A
ct

ua
l o

ut
p

ut

(5) RRAM
conductance
relaxation

Pad

IN
ADC
OUT

IN
ADC
OUT

Output voltage (μ) M
ea

su
re

d
 c

on
d

uc
ta

nc
e

(μ
S

)

Target conductance (μS)ADC input voltage swing

30 min after programming

Fig. 5 | Measured results showing the efficacy of the hardware-algorithm
co-optimization techniques. a, Simulated (blue) and measured (red)
CIFAR-10 test-set classification accuracies. b, CIFAR-10 classification accuracy
at various time steps of chip-in-the-loop fine-tuning. From left to right, each
data point represents a new layer (Conv0 to Dense) programmed onto the chip.

The accuracy at a layer is evaluated by using the hardware-measured outputs
from that layer as inputs to the remaining layers that are simulated in software.
Two curves compare the test-set inference accuracy with and without applying
fine-tuning during training. c, RBM-based image recovery on noisy images
(top) and partially occluded images measured on NeuRRAM (bottom).

CIFAR-10 classi�cation using ResNet-20

Chip-in-the-loop �ne-tuning layer

RBM
on chip

Simulation
Measurement

83.5

84.0

84.5

85.0

85.5

86.0

86.5

N
on

e
C

on
v0

C
on

v1
C

on
v2

C
on

v3
C

on
v4

C
on

v5
C

on
v6

C
on

v7
C

on
v8

C
on

v9
C

on
v1

0
C

on
v1

1
C

on
v1

2
C

on
v1

3
C

on
v1

4
C

on
v1

5
C

on
v1

6
C

on
v1

7
C

on
v1

8
C

on
v1

9
C

on
v2

0
D

en
se

C
la

ss
i	

ca
tio

n
ac

cu
ra

cy
 (%

)

Off-line trained
and programmed

87.81

Ideal software
(64-bit weights,

3-bit inputs)

85.99

83.67

85.66

24

26

80

82

84

86

88

90

C
la

ss
i	

ca
tio

n
ac

cu
ra

cy
 (%

)

25.34

a b
In situ 	ne-tuned

1.99

85.99

85.66

83.67

c

Simulate
with non-
idealities
(iv)–(vii)

+ Noise-
resilient
training

(simulation)

Chip
measurement

+ Chip-in-
the-loop

	ne-tuning
(measurement)

510  |  Nature  |  Vol 608  |  18 August 2022

Article

chip operating conditions such as input voltage pulse amplitude, and
records any ADC offsets for subsequent cancellation during inference.
Ideally, the MVM output voltage dynamic range should fully utilize the
ADC input swing to minimize discretization error. However, without
calibration, the MVM output dynamic range varies with network layers
even with the weight normalization effect of the voltage-mode sensing.
To calibrate MVM to the optimal dynamic range, for each network layer,
we use a subset of training-set data as calibration input to search for the
best operating conditions (Fig. 4b). Extended Data Fig. 6 shows that
different calibration input distributions lead to different output dis-
tributions. To ensure that the calibration data can closely emulate the
distribution seen at test time, it is therefore crucial to use training-set
data as opposed to randomly generated data during calibration. It is
noted that when performing MVM on multiple cores in parallel, those
shared bias voltages cannot be optimized for each core separately,
which might lead to sub-optimal operating conditions and additional
accuracy loss (detailed in Methods).

Stochastic non-idealities such as RRAM conductance relaxation and
read noises degrade the signal-to-noise ratio (SNR) of the computation,
leading to an inference accuracy drop. Some previous work obtained a
higher SNR by limiting each RRAM cell to store a single bit, and encoding
higher-precision weights using multiple cells9,10,16. Such an approach
lowers the weight memory density. Accompanying that approach, the
neural network is trained with weights quantized to the corresponding
precision. In contrast, we utilize the intrinsic analogue programmability
of RRAM42 to directly store high-precision weights and train the neural
networks to tolerate the lower SNR. Instead of training with quantized
weights, which is equivalent to injecting uniform noise into weights,
we train the model with high-precision weights while injecting noise
with the distribution measured from RRAM devices. RRAMs on NeuR-
RAM are characterized to have a Gaussian-distributed conductance
spread, caused primarily by conductance relaxation. Therefore, we
inject a Gaussian noise into weights during training, similar to a previ-
ous study21. Figure 5a shows that the technique significantly improves
the model’s immunity to noise, from a CIFAR-10 classification accuracy
of 25.34% without noise injection to 85.99% with noise injection. After
the training, we program the non-quantized weights to RRAM analogue
conductances using an iterative write–verify technique, described in
Methods. This technique enables NeuRRAM to achieve an inference
accuracy equivalent to models trained with 4-bit weights across vari-
ous applications, while encoding each weight using only two RRAM
cells, which is two-times denser than previous studies that require
one RRAM cell per bit.

By applying the above two techniques, we already can measure infer-
ence accuracy comparable to or better than software models with 4-bit
weights on Google speech command recognition, MNIST image recov-
ery and MNIST classification (Fig. 1e). For deeper neural networks, we
found that the error caused by those non-idealities that have nonlinear
effects on MVM outputs, such as voltage drops, can accumulate through
layers, and become more difficult to mitigate. In addition, multi-core

parallel MVM leads to large instantaneous current, further exacerbating
non-idealities such as voltage drop on input wires ((1) in Fig. 4a). As a
result, when performing multi-core parallel inference on a deep CNN,
ResNet-2043, the measured accuracy on CIFAR-10 classification (83.67%)
is still 3.36% lower than that of a 4-bit-weight software model (87.03%).

To bridge this accuracy gap, we introduce a chip-in-the-loop progres-
sive fine-tuning technique. Chip-in-the-loop training mitigates the
impact of non-idealities by measuring training error directly on the
chip44. Previous work has shown that fine-tuning the final layers using
the back-propagated gradients calculated from hardware-measured
outputs helped improve accuracy5. We find this technique to be of
limited effectiveness in countering those nonlinear non-idealities. Such
a technique also requires re-programming RRAM devices, which con-
sumes additional energy. Our chip-in-the-loop progressive fine-tuning
overcomes nonlinear model errors by exploiting the intrinsic nonlinear
universal approximation capacity of the deep neural network45, and
furthermore eliminates the need for weight re-programming. Figure 4d
illustrates the fine-tuning procedure. We progressively program the
weights one layer at a time onto the chip. After programming a layer,
we perform inference using the training-set data on the chip up to that
layer, and use the measured outputs to fine-tune the remaining layers
that are still training in software. In the next time step, we program
and measure the next layer on the chip. We repeat this process until
all the layers are programmed. During the process, the non-idealities
of the programmed layers can be progressively compensated by the
remaining layers through training. Figure 5b shows the efficacy of this
progressive fine-tuning technique. From left to right, each data point
represents a new layer programmed onto the chip. The accuracy at each
layer is evaluated by using the chip-measured outputs from that layer
as inputs to the remaining layers in software. The cumulative CIFAR-10
test-set inference accuracy is improved by 1.99% using this technique.
Extended Data Fig. 8a further illustrates the extent to which fine-tuning
recovers the training-set accuracy loss at each layer, demonstrating the
effectiveness of the approach in bridging the accuracy gap between
software and hardware measurements.

Using the techniques described above, we achieve inference accu-
racy comparable to software models trained with 4-bit weights across
all the measured AI benchmark tasks. Figure 1e shows that we achieve
a 0.98% error rate on MNIST handwritten digit recognition using a
7-layer CNN, a 14.34% error rate on CIFAR-10 object classification using
ResNet-20, a 15.34% error rate on Google speech command recognition
using a 4-cell LSTM, and a 70% reduction of L2 image-reconstruction
error compared with the original noisy images on MNIST image recov-
ery using an RBM. Some of these numbers are not yet to the accuracies
achieved by full-precision digital implementations. The accuracy gap
mainly comes from low-precision (≤4-bit) quantization of inputs and
activations, especially on the most sensitive input and output lay-
ers46. For instance, Extended Data Fig. 8b presents an ablation study
that shows that quantizing input images to 4-bit alone results in a
2.7% accuracy drop for CIFAR-10 classification. By contrast, the input

Table 1 | Summary of AI applications and models demonstrated on NeuRRAM

Application Dataset Model architecture Dataflow
type

Activation precision Number of
parameters

Number
of RRAMs
used

 Number of
cores used

Average core
utilization (%)

Image classification CIFAR-10 ResNet-20 (CNN) Forward 3-bit unsigned, input
image 4-bit unsigned

274,461 553,524 48 17.6

MNIST 7-layer CNN Forwards 3-bit unsigned 23,170 46,664 16 4.5

Voice recognition Google voice
command

4 parallel LSTM
cells

Recurrent +
forwards

4-bit signed 281,392 570,048 36 24.2

Image recovery MNIST RBM Forwards +
backwards

Visible: 3-bit
unsigned. Hidden:
binary

96,194 200,880 8 38.3

Nature  |  Vol 608  |  18 August 2022  |  511

layer only accounts for 1.08% of compute and 0.16% of weights of a
ResNet-20 model. Therefore, they can be off-loaded to higher-precision
digital compute units with little overheads. In addition, applying
more advanced quantization techniques and optimizing training
procedures such as data augmentation and regularization should
further improve the accuracy for both quantized software models
and hardware-measured results.

Table 1 summarizes the key features of each demonstrated model.
Most of the essential neural-network layers and operations are imple-
mented on the chip, including all the convolutional, fully connected
and recurrent layers, neuron activation functions, batch normaliza-
tion and the stochastic sampling process. Other operations such as
average pooling and element-wise multiplications are implemented
on an FPGA integrated on the same board as NeuRRAM (Extended
Data Fig. 11a). Each of the models is implemented by allocating the
weights to multiple cores on a single NeuRRAM chip. We developed
a software toolchain to allow easy deployment of AI models on the
chip47. The implementation details are described in Methods. Funda-
mentally, each of the selected benchmarks represents a general class
of common edge AI tasks: visual recognition, speech processing and
image de-noising. These results demonstrate the versatility of the TNSA
architecture and the wide applicability of the hardware-algorithm
co-optimization techniques.

The NeuRRAM chip simultaneously improves efficiency, flexibility
and accuracy over existing RRAM-CIM hardware by innovating across
the entire hierarchy of the design, from a TNSA architecture enabling
reconfigurable dataflow direction, to an energy- and area-efficient
voltage-mode neuron circuit, and to a series of algorithm-hardware
co-optimization techniques. These techniques can be more generally
applied to other non-volatile resistive memory technologies such
as phase-change memory8,17,21,23,24, magnetoresistive RAM48 and fer-
roelectric field-effect transistors49. Going forwards, we expect Neu-
RRAM’s peak energy efficiency (EDP) to improve by another two to
three orders of magnitude while supporting bigger AI models when
scaling from 130-nm to 7-nm CMOS and RRAM technologies (detailed
in Methods). Multi-core architecture design with network-on-chip
that realizes efficient and versatile data transfers and inter-array
pipelining is likely to be the next major challenge for RRAM-CIM37,38,
which needs to be addressed by further cross-layer co-optimization.
As resistive memory continues to scale towards offering tera-bits of
on-chip memory50, such a co-optimization approach will equip CIM
hardware on the edge with sufficient performance, efficiency and
versatility to perform complex AI tasks that can only be done on the
cloud today.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-022-04992-8.

1.	 Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).
2.	 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based

on metal-oxide memristors. Nature 521, 61–64 (2015).
3.	 Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature 558, 60–67 (2018).
4.	 Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat.

Electron. 1, 333–343 (2018).
5.	 Yao, P. et al. Fully hardware-implemented memristor convolutional neural network.

Nature 577, 641–646 (2020).
6.	 Mochida, R. et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W

neural-network processor with cell current controlled writing and flexible network
architecture. In Symposium on VLSI Technology, Digest of Technical Papers 175–176 (IEEE,
2018).

7.	 Chen, W. H. et al. CMOS-integrated memristive non-volatile computing-in-memory for AI
edge processors. Nat. Electron. 2, 420–428 (2019).

8.	 Khaddam-Aljameh, R. et al. HERMES core-A 14nm CMOS and PCM-based in-memory
compute core using an array of 300ps/LSB linearized CCO-based ADCs and local digital
processing. In IEEE Symposium on VLSI Circuits, Digest of Technical Papers JFS2-5 (IEEE,
2021).

9.	 Hung, J. M. et al. A four-megabit compute-in-memory macro with eight-bit precision
based on CMOS and resistive random-access memory for AI edge devices. Nat. Electron.
4, 921–930 (2021).

10.	 Xue, C. X. et al. A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel
MAC computing time for CNN based AI edge processors. In IEEE International Solid-State
Circuits Conference (ISSCC), Digest of Technical Papers 388–390 (IEEE, 2019).

11.	 Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient
multiply–accumulate operations. Nat. Electron. 2, 290–299 (2019).

12.	 Ishii, M. et al. On-chip trainable 1.4M 6T2R PCM synaptic array with 1.6K stochastic LIF
neurons for spiking RBM. In International Electron Devices Meeting (IEDM), Technical
Digest 14.2.1–14.2.4 (IEEE, 2019).

13.	 Yan, B. et al. RRAM-based spiking nonvolatile computing-in-memory processing engine
with precision-configurable in situ nonlinear activation. In Symposium on VLSI
Technology, Digest of Technical Papers T86–T87 (IEEE, 2019).

14.	 Wan, W. et al. A 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically
reconfigurable dataflow and in-situ transposable weights for probabilistic graphical
models. In IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical
Papers 498–500 (IEEE, 2020).

15.	 Liu, Q. et al. A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory
chip with fully parallel MAC computing. In IEEE International Solid-State Circuits
Conference (ISSCC), Digest of Technical Papers 500–502 (IEEE, 2020).

16.	 Xue, C. X. et al. A CMOS-integrated compute-in-memory macro based on resistive
random-access memory for AI edge devices. Nat. Electron. 4, 81–90 (2021).

17.	 Narayanan, P. et al. Fully on-chip MAC at 14 nm enabled by accurate row-wise
programming of PCM-based weights and parallel vector-transport in duration-format.
IEEE Trans. Electron Devices 68, 6629–6636 (2021).

18.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2323 (1998).

19.	 Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features from Tiny Images (2009);
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

20.	 Warden, P. Speech commands: a dataset for limited-vocabulary speech recognition.
Preprint at https://arxiv.org/abs/1804.03209 (2018).

21.	 Joshi, V. et al. Accurate deep neural network inference using computational
phase-change memory. Nat. Commun. 11, 2473 (2020).

22.	 Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by memristive crossbar
circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).

23.	 Eryilmaz, S. B. et al. Experimental demonstration of array-level learning with phase
change synaptic devices. In International Electron Devices Meeting (IEDM), Technical
Digest 25.5.1–25.5.4 (IEEE, 2013).

24.	 Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural
network (165 000 synapses) using phase-change memory as the synaptic weight
element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

25.	 Eryilmaz, S. B. et al. Training a probabilistic graphical model with resistive switching
electronic synapses. IEEE Trans. Electron Devices 63, 5004–5011 (2016).

26.	 Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12,
784–789 (2017).

27.	 Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199
(2017).

28.	 Banbury, C. et al. MLPerf tiny benchmark. In Conference on Neural Information Processing
Systems (NeurIPS) Track on Datasets and Benchmarks (2021).

29.	 Roy, S., Sridharan, S., Jain, S. & Raghunathan, A. TxSim: modeling training of deep neural
networks on resistive crossbar systems. IEEE Trans. Very Large Scale Integr. Syst. 29,
730–738 (2021).

30.	 Yang, T. J. & Sze, V. Design considerations for efficient deep neural networks on
processing-in-memory accelerators. In International Electron Devices Meeting (IEDM),
Technical Digest 22.1.1–22.1.4 (IEEE, 2019).

31.	 Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
32.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780

(1997).
33.	 Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques

(Adaptive Computation and Machine Learning series) (MIT Press, 2009).
34.	 Su, J. W. et al. A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM

compute-in-memory macro for AI edge chips. In IEEE International Solid-State Circuits
Conference (ISSCC), Digest of Technical Papers 240–242 (IEEE, 2020).

35.	 Guo, R. et al. A 5.1pJ/neuron 127.3us/inference RNN-based speech recognition processor
using 16 computing-in-memory SRAM macros in 65nm CMOS. In IEEE Symposium on
VLSI Circuits, Digest of Technical Papers 120–121 (IEEE, 2019).

36.	 Wang, Z. et al. Fully memristive neural networks for pattern classification with
unsupervised learning. Nat. Electron. 1, 137–145 (2018).

37.	 Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. In Proc. 2016 43rd International Symposium on Computer
Architecture (ISCA) 14-26 (IEEE/ACM, 2016).

38.	 Ankit, A. et al. PUMA: a programmable ultra-efficient memristor-based accelerator for
machine learning inference. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) 715–731 (ACM, 2019).

39.	 Wan, W. et al. A voltage-mode sensing scheme with differential-row weight mapping for
energy-efficient RRAM-based in-memory computing. In Symposium on VLSI Technology,
Digest of Technical Papers (IEEE, 2020).

40.	 Murmann, B. Digitally assisted data converter design. In European Conference on
Solid-State Circuits (ESSCIRC) 24–31 (IEEE, 2013).

41.	 Zhao, M. et al. Investigation of statistical retention of filamentary analog RRAM for
neuromophic computing. In International Electron Devices Meeting (IEDM), Technical
Digest 39.4.1–39.4.4 (IEEE, 2018).

https://doi.org/10.1038/s41586-022-04992-8
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1804.03209

512  |  Nature  |  Vol 608  |  18 August 2022

Article
42.	 Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of state for

memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23,
762–775 (2012).

43.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
770–778 (IEEE, 2016).

44.	 Cauwenberghs, G. & Bayoumi, M. A. Learning on Silicon—Adaptive VLSI Neural Systems
(Kluwer Academic, 1999).

45.	 Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal
approximators. Neural Netw. 2, 359–366 (1989).

46.	 Choi, J. et al. PACT: parameterized clipping activation for quantized neural networks.
Preprint at https://arxiv.org/abs/1805.06085 (2018).

47.	 Wan, W. weierwan/Neurram_48core: Initial Release (Version 1.0) [Computer software].
Zenodo https://doi.org/10.5281/zenodo.6558399 (2022).

48.	 Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory
computing. Nature 601, 211–216 (2022).

49.	 Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network
training. In International Electron Devices Meeting (IEDM), Technical Digest 6.2.1–6.2.4
(IEEE, 2018).

50.	 Jiang, Z. et al. Next-generation ultrahigh-density 3-D vertical resistive switching memory
(VRSM)–Part II: design guidelines for device, array, and architecture. IEEE Trans. Electron
Devices 66, 5147–5154 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

https://arxiv.org/abs/1805.06085
https://doi.org/10.5281/zenodo.6558399
http://creativecommons.org/licenses/by/4.0/

Methods

Core block diagram and operating modes
Figure 2d and Extended Data Fig. 1 show the block diagram of a single
CIM core. To support versatile MVM directions, most of the design is
symmetrical in the row (BLs and WLs) and column (SLs) directions. The
row and column register files store the inputs and outputs of MVMs, and
can be written externally by either an Serial Peripheral Interface (SPI) or
a random-access interface that uses an 8-bit address decoder to select
one register entry, or internally by the neurons. The SL peripheral circuits
contain an LFSR block used to generate pseudo-random sequences used
for probabilistic sampling. It is implemented by two LFSR chains propa-
gating in opposite directions. The registers of the two chains are XORed to
generate spatially uncorrelated random numbers51. The controller block
receives commands and generates control waveforms to the BL/WL/SL
peripheral logic and to the neurons. It contains a delay-line-based pulse
generator with tunable pulse width from 1 ns to 10 ns. It also implements
clock-gating and power-gating logic used to turn off the core in idle mode.
Each WL, BL and SL of the TNSA is driven by a driver consisting of multiple
pass gates that supply different voltages. On the basis of the values stored
in the register files and the control signals issued by the controller, the
WL/BL/SL logic decides the state of each pass gate.

The core has three main operating modes: a weight-programming
mode, a neuron-testing mode and an MVM mode (Extended Data Fig. 1).
In the weight-programming mode, individual RRAM cells are selected
for read and write. To select a single cell, the registers at the correspond-
ing row and column are programmed to ‘1’ through random access with
the help of the row and column decoder, whereas the other registers
are reset to ‘0’. The WL/BL/SL logic turns on the corresponding driver
pass gates to apply a set/reset/read voltage on the selected cell. In the
neuron-testing mode, the WLs are kept at ground voltage (GND). Neu-
rons receive inputs directly from BL or SL drivers through their BL or
SL switch, bypassing RRAM devices. This allows us to characterize the
neurons independently from the RRAM array. In the MVM mode, each
input BL and SL is driven to Vref − Vread, Vref + Vread or Vref depending on
the registers’ value at that row or column. If the MVM is in the BL-to-SL
direction, we activate the WLs that are within the input vector length
while keeping the rest at GND; if the MVM is in the SL-to-BL direction,
we activate all the WLs. After neurons finish analogue-to-digital con-
version, the pass gates from BLs and SLs to the registers are turned on
to allow neuron-state readout.

Device fabrication
RRAM arrays in NeuRRAM are in a one-transistor–one-resistor (1T1R)
configuration, where each RRAM device is stacked on top of and con-
nects in series with a selector NMOS transistor that cuts off the sneak
path and provides current compliance during RRAM programming
and reading. The selector n-type metal-oxide-semiconductor (NMOS),
CMOS peripheral circuits and the bottom four back-end-of-line intercon-
nect metal layers are fabricated in a standard 130-nm foundry process.
Owing to the higher voltage required for RRAM forming and program-
ming, the selector NMOS and the peripheral circuits that directly inter-
face with RRAM arrays use thick-oxide input/output (I/O) transistors
rated for 5-V operation. All the other CMOS circuits in neurons, digital
logic, registers and so on use core transistors rated for 1.8-V operations.

The RRAM device is sandwiched between metal-4 and metal-5 layers
shown in Fig. 2c. After the foundry completes the fabrication of CMOS
and the bottom four metal layers, we use a laboratory process to finish
the fabrication of the RRAM devices and the metal-5 interconnect, and
the top metal pad and passivation layers. The RRAM device stack con-
sists of a titanium nitride (TiN) bottom-electrode layer, a hafnium oxide
(HfOx) switching layer, a tantalum oxide (TaOx) thermal-enhancement
layer52 and a TiN top-electrode layer. They are deposited sequentially,
followed by a lithography step to pattern the lateral structure of the
device array.

RRAM write–verify programming and conductance relaxation
Each neural-network weight is encoded by the differential conductance
between two RRAM cells on adjacent rows along the same column. The
first RRAM cell encodes positive weight, and is programmed to a low
conductance state (gmin) if the weight is negative; the second
cell encodes negative weight, and is programmed to gmin if the weight
is positive. Mathematically, the conductances of the two cells are

g gmax(,)W
wmax minmax

 and g gmax(− ,)W
wmax minmax

 respectively, where
gmax and gmin are the maximum and minimum conductance of
the RRAMs, wmax is the maximum absolute value of weights, and W is
the unquantized high-precision weight.

To program an RRAM cell to its target conductance, we use an
incremental-pulse write–verify technique42. Extended Data Fig. 3a,b
illustrates the procedure. We start by measuring the initial conduct-
ance of the cell. If the value is below the target conductance, we apply a
weak set pulse aiming to slightly increase the cell conductance. Then we
read the cell again. If the value is still below the target, we apply another
set pulse with amplitude incremented by a small amount. We repeat
such set–read cycles until the cell conductance is within an acceptance
range to the target value or overshoots to the other side of the target.
In the latter case, we reverse the pulse polarity to reset, and repeat
the same procedure as with set. During the set/reset pulse train, the
cell conductance is likely to bounce up and down multiple times until
eventually it enters the acceptance range or reaches a time-out limit.

There are a few trade-offs in selecting programming conditions. (1) A
smaller acceptance range and a higher time-out limit improve program-
ming precision, but require a longer time. (2) A higher gmax improves
the SNR during inference, but leads to higher energy consumption
and more programming failures for cells that cannot reach high con-
ductance. In our experiments, we set the initial set pulse voltage to
be 1.2 V and the reset pulse voltage to be 1.5 V, both with an increment
of 0.1 V and pulse width of 1 μs. A RRAM read takes 1–10 μs, depend-
ing on its conductance. The acceptance range is ±1 μS to the target
conductance. The time-out limit is 30 set–reset polarity reversals.
We used gmin = 1 μS for all the models, and gmax = 40 μS for CNNs and
gmax = 30 μS for LSTMs and RBMs. With such settings, 99% of the RRAM
cells can be programmed to the acceptance range within the time-out
limit. On average each cell requires 8.52 set/reset pulses. In the current
implementation, the speed of such a write–verify process is limited
by external control of DAC and ADC. If integrating everything into a
single chip, such write–verify will take on average 56 µs per cell. Having
multiple copies of DAC and ADC to perform write–verify on multiple
cells in parallel will further improve RRAM programming throughput,
at the cost of more chip area.

Besides the longer programming time, another reason to not use
an overly small write–verify acceptance range is RRAM conductance
relaxation. RRAM conductance changes over time after programming.
Most of the change happens within a short time window (less than 1 s)
immediately following the programming, after which the change
becomes much slower, as shown in Extended Data Fig. 3d. The abrupt
initial change is called ‘conductance relaxation’ in the literature41. Its
statistics follow a Gaussian distribution at all conductance states except
when the conductance is close to gmin. Extended Data Fig. 3c,d shows
the conductance relaxation measured across the whole gmin-to-gmax
conductance range. We found that the loss of programming precision
owing to conductance relaxation is much higher than that caused by
the write–verify acceptance range. The average standard deviation
across all levels of initial conductance is about 2.8 μS. The maximum
standard deviation is about 4 μS, which is close to 10% of gmax.

To mitigate the relaxation, we use an iterative programming tech-
nique. We iterate over the RRAM array for multiple times. In each itera-
tion, we measure all the cells and re-program those whose conductance
has drifted outside the acceptance range. Extended Data Fig. 3e shows
that the standard deviation becomes smaller with more programming

Article
iterations. After 3 iterations, the standard deviation becomes about
2 μS, a 29% decrease compared with the initial value. We use 3 iterations
in all our neural-network demonstrations and perform inference at
least 30 min after the programming such that the measured inference
accuracy would account for such conductance relaxation effects.
By combining the iterative programming with our hardware-aware
model training approach, the impact of relaxation can be largely
mitigated.

Implementation of MVM with multi-bit inputs and outputs
The neuron and the peripheral circuits support MVM at configurable
input and output bit-precisions. An MVM operation consists of an ini-
tialization phase, an input phase and an output phase. Extended Data
Fig. 4 illustrates the neuron circuit operation. During the initialization
phase (Extended Data Fig. 4a), all BLs and SLs are precharged to Vref.
The sampling capacitors Csample of the neurons are also precharged to
Vref, whereas the integration capacitors Cinteg are discharged.

During the input phase, each input wire (either BL or SL depending
on MVM direction) is driven to one of three voltage levels, Vref − Vread,
Vref and Vref + Vread, through three pass gates, as shown in Fig. 3b. Dur-
ing forwards MVM, under differential-row weight mapping, each
input is applied to a pair of adjacent BLs. The two BLs are driven to the
opposite voltage with respect to Vref. That is, when the input is 0, both
wires are driven to Vref; when the input is +1, the two wires are driven
to Vref + Vread and Vref − Vread; and when the input is −1, to Vref − Vread and
Vref + Vread. During backwards MVM, each input is applied to a single SL.
The difference operation is performed digitally after neurons finish
analogue-to-digital conversions.

After biasing the input wires, we then pulse those WLs that have
inputs for 10 ns, while keeping output wires floating. As voltages of the

output wires settle to V =j
V G

G

∑

∑
i i ij

i ij
, where Gij represents conductance of

RRAM at the i-th row and the j-th column, we turn off the WLs to stop
all current flow. We then sample the charge remaining on the output
wire parasitic capacitance to Csample located within neurons, followed
by integrating the charge onto Cinteg, as shown in Extended Data Fig. 4b.
The sampling pulse is 10 ns (limited by the 100-MHz external clock
from the FPGA); the integration pulse is 240 ns, limited by large integra-
tion capacitor (104 fF), which was chosen conservatively to ensure
function correctness and testing different neuron operating condi-
tions.

The multi-bit input digital-to-analogue conversion is performed
in a bit-serial fashion. For the nth LSB, we apply a single pulse to the
input wires, followed by sampling and integrating charge from output
wires onto Cinteg for 2n−1 cycles. At the end of multi-bit input phase,
the complete analogue MVM output is stored as charge on Cinteg. For
example, as shown in Fig. 3e, when the input vectors are 4-bit signed
integers with 1 sign-bit and 3 magnitude-bits, we first send pulses
corresponding to the first (least significant) magnitude-bit to input
wires, followed by sampling and integrating for one cycle. For the
second and the third magnitude-bits, we again apply one pulse to
input wires for each bit, followed by sampling and integrating for
two cycles and four cycles, respectively. In general, for n-bit signed
integer inputs, we need a total of n − 1 input pulses and 2n−1 − 1 sampling
and integration cycles.

Such a multi-bit input scheme becomes inefficient for high-input
bit-precision owing to the exponentially increasing sampling and
integration cycles. Moreover, headroom clipping becomes an issue
as charge integrated at Cinteg saturates with more integration cycles. The
headroom clipping can be overcome by using lower Vread, but at the cost
of a lower SNR, so the overall MVM accuracy might not improve when
using higher-precision inputs. For instance, Extended Data Fig. 5a,c
shows the measured root-mean-square error (r.m.s.e.) of the MVM
results. Quantizing inputs to 6-bit (r.m.s.e. = 0.581) does not improve
the MVM accuracy compared with 4-bit (r.m.s.e. = 0.582), owing to
the lower SNR.

To solve both the issues, we use a 2-phase input scheme for input
greater than 4-bits. Figure 3f illustrates the process. To perform MVM
with 6-bit inputs and 8-bit outputs, we divide inputs into two segments,
the first containing the three MSBs and the second containing the three
LSBs. We then perform MVM including the output analogue-to-digital
conversion for each segment separately. For the MSBs, neurons (ADCs)
are configured to output 8-bits; for the LSBs, neurons output 5-bits. The
final results are obtained by shifting and adding the two outputs in digi-
tal domain. Extended Data Fig. 5d shows that the scheme lowers MVM
r.m.s.e. from 0.581 to 0.519. Extended Data Fig. 12c–e further shows that
such a two-phase scheme both extends the input bit-precision range
and improves the energy efficiency.

Finally, during the output phase, the analogue-to-digital conver-
sion is again performed in a bit-serial fashion through a binary search
process. First, to generate the sign-bit of outputs, we disconnect the
feedback loop of the amplifier to turn the integrator into a compara-
tor (Extended Data Fig. 4c). We drive the right side of Cinteg to Vref. If the
integrated charge is positive, the comparator output will be GND, and
supply voltage VDD otherwise. The comparator output is then inverted,
latched and readout to the BL or SL via the neuron BL or SL switch before
being written into the peripheral BL or SL registers.

To generate k magnitude-bits, we add or subtract charge from Cinteg
(Extended Data Fig. 4d), followed by comparison and readout for k
cycles. From MSB to LSB, the amount of charge added or subtracted
is halved every cycle. Whether to add or to subtract is automatically
determined by the comparison result stored in the latch from the pre-
vious cycle. Figure 3g illustrates such a process. A sign-bit of ‘1’ is first
generated and latched in the first cycle, representing a positive out-
put. To generate the most significant magnitude-bit, the latch turns
on the path from Vdecr− = Vref − Vdecr to Csample. The charge sampled by
Csample is then integrated on Cinteg by turning on the negative feedback
loop of the amplifier, resulting in CsampleVdecr amount of charge being
subtracted from Cinteg. In this example, CsampleVdecr is greater than the
original amount of charge on Cinteg, so the total charge becomes nega-
tive, and the comparator generates a ‘0’ output. To generate the second
magnitude-bit, Vdecr is reduced by half. This time, the latch turns on the
path from Vdecr+ = Vref + 1/2Vdecr to Csample. As the total charge on Cinteg after
integration is still negative, the comparator outputs a ‘0’ again in this
cycle. We repeat this process until the least significant magnitude-bit
is generated. It is noted that if the initial sign-bit is ‘0’, all subsequent
magnitude-bits are inverted before readout.

Such an output conversion scheme is similar to an algorithmic ADC
or a SAR ADC in the sense that a binary search is performed for n cycles
for a n-bit output. The difference is that an algorithmic ADC uses a resi-
due amplifier, and a SAR ADC requires a multi-bit DAC for each ADC,
whereas our scheme does not need a residue amplifier, and uses a single
DAC that outputs 2 × (n − 1) different Vdecr+ and Vdecr− levels, shared by all
neurons (ADCs). As a result, our scheme enables a more compact design
by time-multiplexing an amplifier for integration and comparison,
eliminating the residual amplifier, and amortizing the DAC area across
all neurons in a CIM core. For CIM designs that use a dense memory
array, such a compact design allows each ADC to be time-multiplexed
by a fewer number of rows and columns, thus improving throughput.

To summarize, both the configurable MVM input and output
bit-precisions and various neuron activation functions are imple-
mented using different combinations of the four basic operations:
sampling, integration, comparison and charge decrement. Importantly,
all the four operations are realized by a single amplifier configured in
different feedback modes. As a result, the design realizes versatility
and compactness at the same time.

Multi-core parallel MVM
NeuRRAM supports performing MVMs in parallel on multiple CIM
cores. Multi-core MVM brings additional challenges to computational
accuracy, because certain hardware non-idealities that do not manifest

in single-core MVM become more severe with more cores. They include
voltage drop on input wires, core-to-core variation and supply voltage
instability. voltage drop on input wires (non-ideality (1) in Fig. 4a) is
caused by large current drawn from a shared voltage source simul-
taneously by multiple cores. It makes equivalent weights stored in
each core vary with applied inputs, and therefore have a nonlinear
input-dependent effect on MVM outputs. Moreover, as different cores
have a different distance from the shared voltage source, they expe-
rience a different amounts of voltage drops. Therefore, we cannot
optimize read-voltage amplitude separately for each core to make
its MVM output occupy exactly the full neuron input dynamic range.

These non-idealities together degrade the multi-core MVM accuracy.
Extended Data Fig. 5e,f shows that when performing convolution in
parallel on the 3 cores, outputs of convolutional layer 15 are measured
to have a higher r.m.s.e. of 0.383 compared with 0.318 obtained by
performing convolution sequentially on the 3 cores. In our ResNet-20
experiment, we performed 2-core parallel MVMs for convolutions
within block 1 (Extended Data Fig. 9a), and 3-core parallel MVMs for
convolutions within blocks 2 and 3.

The voltage-drop issue can be partially alleviated by making the
wires that carry large instantaneous current as low resistance as pos-
sible, and by employing a power delivery network with more optimized
topology. But the issue will persist and become worse as more cores
are used. Therefore, our experiments aim to study the efficacy of
algorithm-hardware co-optimization techniques in mitigating the
issue. Also, it is noted that for a full-chip implementation, additional
modules such as intermediate result buffers, partial-sum accumulators
and network-on-chip will need to be integrated to manage inter-core
data transfers. Program scheduling should also be carefully optimized
to minimize buffer size and energy spent at intermediate data move-
ment. Although there are studies on such full-chip architecture and
scheduling37,38,53, they are outside the scope of this study.

Noise-resilient neural-network training
During noise-resilient neural-network training, we inject noise into
weights of all fully connected and convolutional layers during the
forwards pass of neural-network training to emulate the effects of
RRAM conductance relaxation and read noises. The distribution of
the injected noise is obtained by RRAM characterization. We used the
iterative write–verify technique to program RRAM cells into different
initial conductance states and measure their conductance relaxation
after 30 min. Extended Data Fig. 3d shows that measured conductance
relaxation has an absolute value of mean <1 μS (gmin) at all conductance
states. The highest standard deviation is 3.87 μS, about 10% of the gmax
40 μS, found at about 12 μS initial conductance state. Therefore, to
simulate such conductance relaxation behaviour during inference,
we inject a Gaussian noise with a zero mean and a standard deviation
equal to 10% of the maximum weights of a layer.

We train models with different levels of noise injection from 0% to
40%, and select the model that achieves the highest inference accu-
racy at 10% noise level for on-chip deployment. We find that injecting
a higher noise during training than testing improves models’ noise
resiliency. Extended Data Fig. 7a–c shows that the best test-time
accuracy in the presence of 10% weight noise is obtained with 20%
training-time noise injection for CIFAR-10 image classification, 15%
for Google voice command classification and 35% for RBM-based
image reconstruction.

For CIFAR-10, the better initial accuracy obtained by the model
trained with 5% noise is most likely due to the regularization effect
of noise injection. A similar phenomenon has been reported in
neural-network quantization literature where a model trained with
quantization occasionally outperforms a full-precision model54,55. In
our experiments, we did not apply additional regularization on top of
noise injection for models trained without noise, which might result
in sub-optimal accuracy.

For RBM, Extended Data Fig. 7d further shows how reconstruction
errors reduce with the number of Gibbs sampling steps for models
trained with different noises. In general, models trained with higher
noises converge faster during inference. The model trained with 20%
noise reaches the lowest error at the end of 100 Gibbs sampling steps.

Extended Data Fig. 7e shows the effect of noise injection on weight
distribution. Without noise injection, the weights have a Gaussian dis-
tribution. The neural-network outputs heavily depend on a small frac-
tion of large weights, and thus become vulnerable to noise injection.
With noise injection, the weights distribute more uniformly, making
the model more noise resilient.

To efficiently implement the models on NeuRRAM, inputs to all con-
volutional and fully connected layers are quantized to 4-bit or below.
The input bit-precisions of all the models are summarized in Table 1.
We perform the quantized training using the parameterized clipping
activation technique46. The accuracies of some of our quantized models
are lower than that of the state-of-the-art quantized model because
we apply <4-bit quantization to the most sensitive input and output
layers of the neural networks, which have been reported to cause large
accuracy degradation and are thus often excluded from low-precision
quantization46,54. To obtain better accuracy for quantized models, one
can use higher precision for sensitive input and output layers, apply
more advanced quantization techniques, and use more optimized data
preprocessing, data augmentation and regularization techniques dur-
ing training. However, the focus of this work is to achieve comparable
inference accuracy on hardware and on software while keeping all these
variables the same, rather than to obtain state-of-the-art inference
accuracy on all the tasks. The aforementioned quantization and training
techniques will be equally beneficial for both our software baselines
and hardware measurements.

Chip-in-the-loop progressive fine-tuning
During the progressive chip-in-the-loop fine-tuning, we use the
chip-measured intermediate outputs from a layer to fine-tune the
weights of the remaining layers. Importantly, to fairly evaluate the effi-
cacy of the technique, we do not use the test-set data (for either training
or selecting checkpoint) during the entire process of fine-tuning. To
avoid over-fitting to a small fraction of data, measurements should be
performed on the entire training-set data. We reduce the learning rate
to 1/100 of the initial learning rate used for training the baseline model,
and fine-tune for 30 epochs, although we observed that the accuracy
generally plateaus within the first 10 epochs. The same weight noise
injection and input quantization are applied during the fine-tuning.

Implementations of CNNs, LSTMs and RBMs
We use CNN models for the CIFAR-10 and MNIST image classification
tasks. The CIFAR-10 dataset consists of 50,000 training images and
10,000 testing images belonging to 10 object classes. We perform image
classification using the ResNet-2043, which contains 21 convolutional
layers and 1 fully connected layer (Extended Data Fig. 9a), with batch
normalizations and ReLU activations between the layers. The model
is trained using the Keras framework. We quantize the input of all con-
volutional and fully connected layers to a 3-bit unsigned fixed-point
format except for the first convolutional layer, where we quantize the
input image to 4-bit because the inference accuracy is more sensitive
to the input quantization. For the MNIST handwritten digits classifica-
tion, we use a seven-layer CNN consisting of six convolutional layers
and one fully connected layer, and use max-pooling between layers to
down-sample feature map sizes. The inputs to all the layers, including
the input image, are quantized to a 3-bit unsigned fixed-point format.

All the parameters of the CNNs are implemented on a single NeuR-
RAM chip including those of the convolutional layers, the fully con-
nected layers and the batch normalization. Other operations such as
partial-sum accumulation and average pooling are implemented on an
FPGA integrated on the same board as the NeuRRAM. These operations

Article
amount to only a small fraction of the total computation and integrating
their implementation in digital CMOS would incur negligible overhead;
the FPGA implementation was chosen to provide greater flexibility
during test and development.

Extended Data Fig. 9a–c illustrates the process to map a convolutional
layer on a chip. To implement the weights of a four-dimensional convo-
lutional layer with dimension H (height), W (width), I (number of input
channels), O (number of output channels) on two-dimensional RRAM
arrays, we flatten the first three dimensions into a one-dimensional
vector, and append the bias term of each output channel to each vec-
tor. If the range of the bias values is B times of the weight range, we
evenly divide the bias values and implement them using B rows. Fur-
thermore, we merge the batch normalization parameters into convo-
lutional weights and biases after training (Extended Data Fig. 9b), and
program the merged Wʹ and bʹ onto RRAM arrays such that no explicit
batch normalization needs to be performed during inference.

Under the differential-row weight-mapping scheme, the parameters
of a convolutional layer are converted into a conductance matrix of
size (2(HWI + B), O). If the conductance matrix fits into a single core,
an input vector is applied to 2(HWI + B) rows and broadcast to O col-
umns in a single cycle. HWIO multiply–accumulate (MAC) operations
are performed in parallel. Most ResNet-20 convolutional layers have a
conductance matrix height of 2(HWI + B) that is greater than the RRAM
array length of 256. We therefore split them vertically into multiple
segments, and map the segments either onto different cores that are
accessed in parallel, or onto different columns within a core that are
accessed sequentially. The details of the weight-mapping strategies
are described in the next section.

The Google speech command dataset consists of 65,000 1-s-long audio
recordings of voice commands, such as ‘yes’, ‘up’, ‘on’, ‘stop’ and so on,
spoken by thousands of different people. The commands are categorized
into 12 classes. Extended Data Fig. 9d illustrates the model architecture.
We use the Mel-frequency cepstral coefficient encoding approach to
encode every 40-ms piece of audio into a length-40 vector. With a hop
length of 20 ms, we have a time series of 50 steps for each 1-s recording.

We build a model that contains four parallel LSTM cells. Each cell has
a hidden state of length 112. The final classification is based on summa-
tion of outputs from the four cells. Compared with a single-cell model,
the 4-cell model reduces the classification error (of an unquantized
model) from 10.13% to 9.28% by leveraging additional cores on the
NeuRRAM chip. Within a cell, in each time step, we compute the values
of four LSTM gates (input, activation, forget and output) based on the
inputs from the current step and hidden states from the previous step.
We then perform element-wise operations between the four gates to
compute the new hidden-state value. The final logit outputs are calcu-
lated based on the hidden states of the final time step.

Each LSTM cell has 3 weight matrices that are implemented on the
chip: an input-to-hidden-state matrix with size 40 × 448, a hidden-
state-to-hidden-state matrix with size 112 × 448 and a hidden-state-
to-logits matrix with size 112 × 12. The element-wise operations are
implemented on the FPGA. The model is trained using the PyTorch
framework. The inputs to all the MVMs are quantized to 4-bit signed
fixed-point formats. All the remaining operations are quantized to 8-bit.

An RBM is a type of generative probabilistic graphical model. Instead
of being trained to perform discriminative tasks such as classification,
it learns the statistical structure of the data itself. Extended Data Fig. 9e
shows the architecture of our image-recovery RBM. The model consists
of 794 fully connected visible neurons, corresponding to 784 image
pixels plus 10 one-hot encoded class labels and 120 hidden neurons.
We train the RBM using the contrastive divergence learning procedure
in software.

During inference, we send 3-bit images with partially corrupted or
blocked pixels to the model running on a NeuRRAM chip. The model
then performs back-and-forth MVMs and Gibbs sampling between
visible and hidden neurons for ten cycles. In each cycle, neurons

sample binary states h and v from the MVM outputs based on the
probability distributions: v∣ ∑p h σ b v w(= 1) = (+)j j i i ij and p h(= 1)=j v∣

∑σ b v w(+)j i i ij , where σ is the sigmoid function, ai is a bias for hidden
neurons (h) and bj is a bias for visible neurons (v). After sampling, we
reset the uncorrupted pixels (visible neurons) to the original pixel
values. The final inference performance is evaluated by computing the
average L2-reconstruction error between the original image and the
recovered image. Extended Data Fig. 10 shows some examples of the
measured image recovery.

When mapping the 794 × 120 weight matrix to multiple cores of the
chip, we try to make the MVM output dynamic range of each core rela-
tively consistent such that the recovery performance will not overly
rely on the computational accuracy of any single core. To achieve this,
we assign adjacent pixels (visible neurons) to different cores such that
every core sees a down-sampled version of the whole image, as shown
in Extended Data Fig. 9f). Utilizing the bidirectional MVM functionality
of the TNSA, the visible-to-hidden neuron MVM is performed from the
SL-to-BL direction in each core; the hidden-to-visible neuron MVM is
performed from the BL-to-SL direction.

Weight-mapping strategy onto multiple CIM cores
To implement an AI model on a NeuRRAM chip, we convert the weights,
biases and other relevant parameters (for example, batch normaliza-
tion) of each model layer into a single two-dimensional conductance
matrix as described in the previous section. If the height or the width
of a matrix exceed the RRAM array size of a single CIM core (256 × 256),
we split the matrix into multiple smaller conductance matrices, each
with maximum height and width of 256.

We consider three factors when mapping these conductance
matrices onto the 48 cores: resource utilization, computational load
balancing and voltage drop. The top priority is to ensure that all con-
ductance matrices of a model are mapped onto a single chip such that
no re-programming is needed during inference. If the total number of
conductance matrices does not exceed 48, we can map each matrix
onto a single core (case (1) in Fig. 2a) or multiple cores. There are two
scenarios when we map a single matrix onto multiple cores. (1) When a
model has different computational intensities, defined as the amount
of computation per weights, for different layers, for example, CNNs
often have higher computational intensity for earlier layers owing to
larger feature map dimensions, we duplicate the more computation-
ally intensive matrices to multiple cores and operate them in parallel
to increase throughput and balance the computational loads across
the layers (case (2) in Fig. 2a). (2) Some models have ‘wide’ conduct-
ance matrices (output dimension >128), such as our image-recovery
RBM. If mapping the entire matrix onto a single core, each input driver
needs to supply large current for its connecting RRAMs, resulting in a
significant voltage drop on the driver, deteriorating inference accuracy.
Therefore, when there are spare cores, we can split the matrix vertically
into multiple segments and map them onto different cores to mitigate
the voltage drop (case (6) in Fig. 2a).

By contrast, if a model has more than 48 conductance matrices, we
need to merge some matrices so that they can fit onto a single chip.
The smaller matrices are merged diagonally such that they can be
accessed in parallel (case (3) in Fig. 2a). The bigger matrices are merged
horizontally and accessed by time-multiplexing input rows (case (4) in
Fig. 2a). When selecting the matrices to merge, we want to avoid the
matrices that belong to the same two categories described in the previ-
ous paragraph: (1) those that have high computational intensity (for
example, early layers of ResNet-20) to minimize impact on throughput;
and (2) those with ‘wide’ output dimension (for example, late layers
of ResNet-20 have large number of output channels) to avoid a large
voltage drop. For instance, in our ResNet-20 implementation, among
a total of 61 conductance matrices (Extended Data Fig. 9a: 1 from input
layer, 12 from block 1, 17 from block 2, 28 from block 3, 2 from shortcut
layers and 1 from final dense layer), we map each of the conductance

matrices in blocks 1 and 3 onto a single core, and merge the remaining
matrices to occupy the 8 remaining cores.

Table 1 summarizes core usage for all the models. It is noted that
for partially occupied cores, unused RRAM cells are either unformed
or programmed to high resistance state; WLs of unused rows are not
activated during inference. Therefore, they do not consume additional
energy during inference.

Test-system implementation
Extended Data Fig. 11a shows the hardware test system for the NeuR-
RAM chip. The NeuRRAM chip is configured by, receives inputs from
and sends outputs to a Xilinx Spartan-6 FPGA that sits on an Opal Kelly
integrated FPGA board. The FPGA communicates with the PC via a
USB 3.0 module. The test board also houses voltage DACs that provide
various bias voltages required by RRAM programming and MVM, and
ADCs to measure RRAM conductance during the write–verify program-
ming. The power of the entire board is supplied by a standard ‘cannon
style’ d.c. power connector and integrated switching regulators on
the Opal Kelly board such that no external lab equipment is needed
for the chip operation.

To enable fast implementation of various machine-learning applica-
tions on the NeuRRAM chip, we developed a software toolchain that
provides Python-based application programming interfaces (APIs)
at various levels. The low-level APIs provide access to basic opera-
tions of each chip module such as RRAM read and write and neuron
analogue-to-digital conversion; the middle-level APIs include essen-
tial operations required for implementing neural-network layers such
as the multi-core parallel MVMs with configurable bit-precision and
RRAM write–verify programming; the high-level APIs integrate vari-
ous middle-level modules to provide complete implementations of
neural-network layers, such as weight mapping and batch inference of
convolutional and fully connected layers. The software toolchain aims to
allow software developers who are not familiar with the NeuRRAM chip
design to deploy their machine-learning models on the NeuRRAM chip.

Power and throughput measurements
To characterize MVM energy efficiency at various input and output
bit-precisions, we measure the power consumption and latency of the
MVM input and output stages separately. The total energy consump-
tion and the total time are the sum of input and output stages because
the two stages are performed independently as described in the above
sections. As a result, we can easily obtain the energy efficiency of any
combinations of input and output bit-precisions.

To measure the input-stage energy efficiency, we generate a 256 × 256
random weight matrix with Gaussian distribution, split it into 2 seg-
ments, each with dimension 128 × 256, and program the two segments
to two cores using the differential-row weight mapping. We measure
the power consumption and latency for performing 10 million MVMs,
or equivalently 655 billion MAC operations. The comparison with pre-
vious work shown in Fig. 1d uses the same workload as benchmark.

Extended Data Fig. 12a shows the energy per operation consumed
during the input and the output stages of MVMs under various
bit-precisions. The inputs are in the signed integer format, where the
first bit represents the sign, and the other bits represent the magnitude.
One-bit (binary) and two-bit (ternary) show similar energy because each
input wire is driven to one of three voltage levels. Binary input is there-
fore just a special case for ternary input. It is noted that the curve shown
in Extended Data Fig. 12a is obtained without the two-phase operation.
As a result, we see a super-linear increase of energy as input bit-precision
increases. Similar to the inputs, the outputs are also represented in the
signed integer format. The output-stage energy consumption grows
linearly with output bit-precision because one additional binary search
cycle is needed for every additional bit. The output stage consumes less
energy than the input stage because it does not involve toggling highly
capacitive WLs that are driven at a higher voltage, as we discuss below.

For the MVM measurements shown in Extended Data Fig. 12b–e,
the MVM output stage is assumed to use 2-bit-higher precision
than inputs to account for the additional bit-precision required for
partial-sum accumulations. The required partial-sum bit-precision
for the voltage-mode sensing implemented by NeuRRAM is much
lower than that required by the conventional current-mode sens-
ing. As explained before, conventional current-sensing designs can
only activate a fraction of rows each cycle, and therefore need many
partial-sum accumulation steps to complete an MVM. In contrast, the
proposed voltage-sensing scheme can activate all the 256 input wires
in a single cycle, and therefore requires less partial-sum accumulation
steps and lower partial-sum precisions.

Extended Data Fig. 12b shows the energy consumption breakdown.
A large fraction of energy is spent in switching on and off the WLs that
connect to gates of select transistors of RRAM devices. These transistors
use thick-oxide I/O transistors to withstand high-voltage during RRAM
forming and programming. They are sized large enough (width 1 µm
and length 500 nm) to provide sufficient current for RRAM program-
ming. As a result, they require high operating voltages and add large
capacitance to the WLs, both contributing to high power consumption
(P = fCV2, where f is the frequency at which the capacitance is charged
and discharged). Simulation shows that each of the 256 access transis-
tors contributes about 1.5 fF to a WL; WL drivers combined contribute
about 48 fF to each WL; additional WL capacitance is mostly from the
inter-wire capacitance from neighbouring BLs and WLs. The WL energy
is expected to decrease significantly if RRAMs can be written by a lower
voltage and have a lower conductance state, and if a smaller transistor
with better drivability can be used.

For applications that require probabilistic sampling, the two
counter-propagating LFSR chains generate random Bernoulli noises
and inject the noises as voltage pulses into neurons. We measure each
noise-injection step to consume on average 121 fJ per neuron, or 0.95 fJ
per weight, which is small compared with other sources of energy con-
sumption shown in Extended Data Fig. 12b.

Extended Data Fig. 12c–e shows the measured latency, peak through-
put and throughput-power efficiency for performing the 256 × 256
MVMs. It is noted that we used EDP as a figure of merit for comparing
designs rather than throughput-power efficiency as tera-operations
per second per watt (TOPS W−1, reciprocal of energy per operation),
because it captures the time-to-solution aspect in addition to energy
consumption. Similar to previous work in this field, the reported
throughput and energy efficiency represent their peak values when
the CIM array utilization is 100%, and does not include time and energy
spent at buffering and moving intermediate data. Future work that
integrates intermediate data buffers, partial-sum accumulators and
so on within a single complete CIM chip should show energy efficiency
measured on end-to-end AI applications.

Projection of NeuRRAM energy efficiency with technology
scaling
The current NeuRRAM chip is fabricated using a 130-nm CMOS technol-
ogy. We expect the energy efficiency to improve with the technology
scaling. Importantly, isolated scaling of CMOS transistors and intercon-
nects is not sufficient for the overall energy-efficiency improvement.
RRAM device characteristics must be optimized jointly with CMOS. The
current RRAM array density under a 1T1R configuration is limited not
by the fabrication process but by the RRAM write current and voltage.
The current NeuRRAM chip uses large thick-oxide I/O transistors as
the ‘T’ to withstand >4-V RRAM forming voltage and provide enough
write current. Only if we lower both the forming voltage and the write
current can we obtain higher density and therefore lower parasitic
capacitance for improved energy efficiency.

Assuming that RRAM devices at a newer technology node can be
programmed at a logic-compatible voltage level, and the required write
current can be reduced such that the size of the connecting transistor

Article
keeps shrinking, the EDP improvements will come from (1) lower oper-
ating voltage and (2) smaller wire and transistor capacitance, that is,
Energy ∝ CV2 and Delay ∝ CV/I. At 7 nm, for instance, we expect the
WL switching energy (Extended Data Fig. 12b) to reduce by about 22.4
times, including 2.6 times from WL voltage scaling (1.3 V → 0.8 V), and
8.5 times from capacitance scaling (capacitance from select transistors,
WL drivers and wires are all assumed to scale with minimum metal pitch
340 nm → 40 nm). Peripheral circuit energy (dominated by the neuron
readout process) is projected to reduce by 42 times, including 5 times
from VDD scaling (1.8 V → 0.8 V) and 8.5 times from smaller parasitic
capacitance. The energy consumed by the MVM pulses and charge
transfer process is independent of the range of RRAM conductance, as
power consumption and settling time of the RRAM array scale with the
same conductance factor that cancels in their product. Specifically the
energy per RRAM MAC is EMAC = Cpar var(Vin), limited only by the parasitic
capacitance per unit RRAM cell Cpar, and the variance in the driven input
voltage var(Vin). Therefore, the MVM energy consumption will reduce
by approximately 34 times, including 4 times from read-voltage scal-
ing (0.5 V → 0.25 V), and 8.5 times from smaller parasitic capacitance.
Overall, we expect an energy consumption reduction of about 34 times
when scaling the design from 130 nm to 7 nm.

In terms of the latency, the current design is limited by the long
integration time of neuron, caused primarily by the relatively large
integration capacitor size (104 fF), which was chosen conservatively
to ensure function correctness and testing different neuron operat-
ing conditions. At more advanced technology nodes, one could use a
much smaller capacitor size to achieve a higher speed. The main con-
cern for scaling-down capacitor size is that the fabrication-induced
capacitor size mismatch will take up a higher fraction of total capaci-
tance, resulting in a lower SNR. However, previous ADC designs have
used a unit capacitor size as small as 50 aF (ref. 56; 340 times smaller
than our Csample). For a more conservative design, a study has shown
that in a 32-nm process, a 0.45-fF unit capacitor has only 1.2% average
standard deviation57. Besides, the integration time also depends on the
drive current of the transistors. Assuming that the transistor current
density (μA μm−1) stays relatively unchanged after VDD scaling, and
that the transistor width in the neuron scales with the contact gate
pitch (310 nm → 57 nm), the total transistor drive current will reduce
by 5.4 times. As a result, when scaling Csample from 17 fF to 0.2 fF and
Cinteg proportionally from 104 fF to 1.22 fF, the latency will improve
by 15.7 times. Therefore, conservatively, we expect the overall EDP to
improve by at least 535 times when scaling the design from 130-nm to
7-nm technology. Extended Data Table 2 shows that such scaling will
enable NeuRRAM to deliver higher energy and area efficiency than
today’s state-of-the-art edge inference accelerators58–61.

Data availability
The datasets used for benchmarks are publicly available18–20. Other
data that support the findings of this study are available in a public
repository47.

Code availability
The software toolchain used to test and deploy AI tasks on the NeuR-
RAM chip, and the codes used to perform noise-resilient model training
and chip-in-the-loop progressive model fine-tuning are available in a
public repository47.

51.	 Cauwenberghs, G. An analog VLSI recurrent neural network learning a continuous-time

trajectory. IEEE Trans. Neural Netw. 7, 346–361 (1996).
52.	 Wu, W. et al. A methodology to improve linearity of analog RRAM for neuromorphic

computing. In Symposium on VLSI Technology, Digest of Technical Papers 103–104
(IEEE, 2018).

53.	 Ji, Y. et al. FPSA: a full system stack solution for reconfigurable ReRAM-based NN
accelerator architecture. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) 733–747 (ACM,
2019).

54.	 Esser, S. K., Mckinstry, J. L., Bablani, D., Appuswamy, R. & Modha, D. S. Learned step size
quantization. In International Conference on Learning Representations (ICLR)
(2020).

55.	 Jung, S. et al. Learning to quantize deep networks by optimizing quantization intervals
with task loss. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 4345–4354 (IEEE/CVF, 2019).

56.	 Stepanovic, D. & Nikolic, B. A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB
SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid
State Circuits 48, 971–982 (2013).

57.	 Tripathi, V. & Murmann, B. Mismatch characterization of small metal fringe capacitors.
IEEE Trans. Circuits Syst. I Regul. Pap. 61, 2236–2242 (2014).

58.	 Chen, Y. H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: an energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE J. Solid State Circuits 52,
127–138 (2017).

59.	 Zimmer, B. et al. A 0.32-128 TOPS, scalable multi-chip-module-based deep neural
network inference accelerator with ground-referenced signaling in 16 nm. IEEE J. Solid
State Circuits 55, 920–932 (2020).

60.	 Lee, J. et al. UNPU: an energy-efficient deep neural network accelerator with fully variable
weight bit precision. IEEE J. Solid State Circuits 54, 173–185 (2019).

61.	 Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture.
Nature 572, 106–111 (2019).

62.	 Murmann, B. ADC Performance Survey 1997–2021 (2021); https://web.stanford.
edu/~murmann/adcsurvey.html

Acknowledgements This work is supported in part by NSF Expeditions in Computing (Penn
State, award number 1317470), the Office of Naval Research (Science of AI program), the SRC
JUMP ASCENT Center, Stanford SystemX Alliance, Stanford NMTRI, Beijing Innovation Center
for Future Chips, National Natural Science Foundation of China (61851404), and Western
Digital Corporation.

Author contributions W.W., R.K., S.B.E., S.J., H.-S.P.W. and G.C. designed the NeuRRAM chip
architecture and circuits. W.W., S.B.E., W.Z. and D.W. implemented physical layout of the chip.
W.Z., H.Q., B.G. and H.W. contributed to the RRAM device fabrication and integration with
CMOS. W.W., R.K., S.D. and G.C. developed the test system. W.W. developed the software
toolchain, implemented the AI models on the chip and conducted all chip measurements.
W.W., C.S. and S.J. worked on the development of AI models. W.W., R.K., C.S., P.R., S.J., H.-S.P.W.
and G.C. contributed to the experiment design and analysis and interpretation of the
measurements. B.G., S.J., H.W., H.-S.P.W. and G.C. supervised the project. All authors
contributed to the writing and editing of the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Weier Wan, Bin Gao,
Siddharth Joshi, Huaqiang Wu, H.-S. Philip Wong or Gert Cauwenberghs.
Peer review information Nature thanks Matthew Marinella and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://web.stanford.edu/~murmann/adcsurvey.html
https://web.stanford.edu/~murmann/adcsurvey.html
http://www.nature.com/reprints

Extended Data Fig. 1 | Peripheral driver circuits for TNSA and chip operating
modes. a, driver circuits’ configuration under the weight-programming mode.
b, under the neuron-testing mode. c, under the MVM mode. d, circuit diagram of

the two counter-propagating LFSR chains XORed to generate pseudo-random
sequences for probabilistic sampling.

Article

Extended Data Fig. 2 | Various MVM dataflow directions and their CIM
implementations. Left, various MVM dataflow directions commonly seen in
different AI models. Middle, conventional CIM implementation of various
dataflow directions. Conventional designs typically locate all peripheral
circuits such as ADCs outside of RRAM array. The resulting implementations of

bidirectional and recurrent MVMs incur overheads in area, latency, and energy.
Right, the Transposable Neurosynaptic Array (TNSA) interleaves RRAM
weights and CMOS neurons across the array and supports diverse MVM
directions with minimal overhead.

Extended Data Fig. 3 | Iterative write–verify RRAM programming.
a, Flowchart of the incremental-pulse write–verify technique to program
RRAMs into target analogue conductance range. b, An example sequence of
the write–verify programming. c, RRAM conductance distribution measured
during and after the write–verify programming. Each blue dot represents one
RRAM cell measured during write–verify. The grey shades show that the RRAM
conductance relaxation cause the distribution to spread out from the target
values. The darker shade shows that the iterative programming helps narrow

the distribution. d, Standard deviation of conductance change measured at
different initial conductance states and different time duration after the initial
programming. The initial conductance relaxation happens at a faster rate than
longer term retention degradation. e, Standard deviation of conductance
relaxation decreases with increasing iterative programming cycles.
f, Distribution of the number of SET/RESET pulses needed to reach
conductance acceptance range.

Article

Extended Data Fig. 4 | 4 basic neuron operations that enable MVM with
multi-bit inputs and outputs. a, Initialization, precharge sampling capacitor
Csample and output wires (SLs), and discharge integration capacitor Cinteg.
b, Sampling and integration, sample SL voltage onto Csample, followed by
integrating the charge onto Cinteg. c, Comparison and readout. The amplifier is

turned into comparator mode to determine the polarity of the integrated
voltage. Comparator outputs are written out of the neuron through the outer
feedback loop. d, Charge decrement, charge is added or subtracted on Cinteg
through the outer feedback loop, depending on value stored in the latch.

Extended Data Fig. 5 | Scatter plots of measured MVMs vs. ideal MVMs.
Results in a-d are generated using the same 64×64 normally distributed
random matrix and 1000 uniformed distributed floating-point vectors ϵ [-1, 1].
a, Forward MVM using differential input scheme with inputs quantized to 4-bit
and outputs 6-bit. b, Backward MVM using differential output scheme. The
higher RMSE is caused by more voltage drop on each SL driver that needs to
drive 128 RRAM cells, compared to 64 cells driven by each BL driver during
forward MVM. c, MVM root-mean-square error (RMSE) does not reduce when

increasing input from 4-bit (a) to 6-bit. This is caused by using a lower input
voltage that leads to worse signal-to-noise-ratio. d, 2-phase operation reduces
MVM RMSE with 6-bit input by breaking inputs into 2 segments and performing
MVMs separately, such that input voltage does not need to be reduced. e–f,
Outputs from conv15 layer of ResNet-20. Weights of conv15 are divided to 3 CIM
cores. Layer outputs show a higher RMSE when performing MVM in parallel on
the 3 cores (f) than sequentially on the 3 cores (e).

Article

Extended Data Fig. 6 | Data distribution with and without model-driven
chip calibration. Left, Distribution of inputs to the final fully connected layer
of ResNet-20 when the inputs are generated from (top-to-bottom) CIFAR-10
test-set data, training-set data, and random uniform data. Right, Distribution
of outputs from the final fully connected layer of ResNet-20. The test-set and

training-set have similar distributions while random uniform data produces a
markedly different output distribution. To ensure that the MVM output voltage
dynamic range during testing is calibrated to occupy the full ADC input swing,
the calibration data should come from training-set data that closely resembles
the test-set data.

Extended Data Fig. 7 | Noise-resilient training of CNNs, LSTMs and RBMs.
a, Change in CIFAR-10 test-set classification accuracy under different weight
noise levels during inference. Noise is represented as fraction of the maximum
absolute value of weights. Different curves represent models trained at
different levels of noise injection. b, Change in voice command recognition

accuracy with weight noise levels. c, Change in MNIST image-reconstruction
error with weight noise levels. d, Decreasing of image-reconstruction error
with Gibbs sampling steps during RBM inference. e, Differences in weight
distributions when trained without and with noise injection.

Article

Extended Data Fig. 8 | Measured chip inference performance. a, CIFAR-10
training-set accuracy loss due to hardware non-idealities, and accuracy
recovery at each step of the chip-in-the-loop progressive fine-tuning. From left
to right, each data point represents a new layer programmed onto the chip.
The blue solid lines represent the accuracy loss measured when performing

inference of that layer on-chip. The red dotted lines represent the measured
recovery in accuracy by fine-tuning subsequent layers. b, Ablation study
showing the impacts of input, activation, and weight quantizations, and weight
noise injection on inference errors.

Extended Data Fig. 9 | Implementation of various AI models. a, Architecture
of ResNet-20 for CIFAR-10 classification. b, The batch normalization
parameters are merged into convolutional weights and biases before mapping
on-chip. c, Illustration of the process to map 4-dimensional weights of a
convolutional layer to NeuRRAM CIM cores. d, Architecture of the LSTM model
used for Google speech command recognition. The model contains 4 parallel

LSTM cells and makes predictions based on the sum of outputs from the 4 cells.
e, Architecture of the RBM model used for MNIST image recovery. During
inference, MVMs and Gibbs sampling are performed back and-forth between
visible and hidden neurons. f, Process to map RBM on NeuRRAM CIM cores.
Adjacent pixels are assigned to different cores to equalize the MVM output
dynamic range at different cores.

Article

Extended Data Fig. 10 | Chip-measured image recovery using RBM. Top: Recovery of MNIST test-set images with randomly selected 20% of pixels flipped to
complementary intensity. Bottom: Recovery of MNIST test-set images with bottom 1/3 of pixels occluded.

Extended Data Fig. 11 | NeuRRAM test system and chip micrographs at
various scales. a, A NeuRRAM chip wire-bonded to a package. b, Measurement
board that connects a packaged NeuRRAM chip (left) to a field-programmable
gate array (FPGA, right). The board houses all the components necessary to
power, operate and measure the chip. No external lab equipment is needed for

the chip operations. c, Micrograph of a 48-core NeuRRAM chip. d, Zoomed-in
micrograph of a single CIM core. e, Zoomed-in micrograph of 2×2 corelets
within the TNSA. One neuron circuit occupies 1270 μm2, which is >100× smaller
than most ADC designs in 130-nm summarized in an ADC survey62. f, Chip area
breakdown.

Article

Extended Data Fig. 12 | Energy consumption, latency, and throughput
measurement results. a, Measured energy consumption per operation during
the MVM input stage (without 2-phase operation) and output stage, where one
multiply–accumulate (MAC) counts as two operations. b, Energy consumption
breakdown at various MVM input and output bit-precisions. Outputs are 2-bit

higher than inputs during a MVM to account for additional precision requirements
from partial-sum accumulation. c, Latency for performing one MVM with 256×256
weight matrix. d, Peak computational throughput (in giga-operations per second).
e, Throughput-power efficiency (in tera-operations per watt).

Extended Data Table 1 | Comparison of fully integrated RRAM-based CIM hardware

Notes:
1. The table does not include studies that do not report detailed performance metrics.
2. All the reported metrics are measured for performing 256×256 matrix-vector multiplications.
3. All reported numbers represent peak throughput/efficiency when array utilization is 100%.

Article
Extended Data Table 2 | Comparison with digital CMOS AI inference accelerators

Notes:
1. The method to project NeuRRAM efficiency to 7 nm is explained in Methods.
2. The energy-efficiency projection of digital accelerators is based on CV2 scaling, where C scales with minimum metal pitch and V is adjusted to nominal VDD of 7 nm.
3. The area-efficiency projection of digital accelerators is based on minimum metal pitch scaling along both horizontal and vertical directions.

	A compute-in-memory chip based on resistive random-access memory

	Reconfigurable RRAM-CIM architecture

	Efficient voltage-mode neuron circuit

	Hardware-algorithm co-optimizations

	Online content

	Fig. 1 Design methodology and main contributions of the NeuRRAM chip.
	Fig. 2 Reconfigurable architecture of the NeuRRAM chip.
	Fig. 3 Voltage-mode MVM with multi-bit inputs and outputs.
	Fig. 4 Hardware-algorithm co-optimization techniques to improve NeuRRAM inference accuracy.
	Fig. 5 Measured results showing the efficacy of the hardware-algorithm co-optimization techniques.
	Extended Data Fig. 1 Peripheral driver circuits for TNSA and chip operating modes.
	Extended Data Fig. 2 Various MVM dataflow directions and their CIM implementations.
	Extended Data Fig. 3 Iterative write–verify RRAM programming.
	Extended Data Fig. 4 4 basic neuron operations that enable MVM with multi-bit inputs and outputs.
	Extended Data Fig. 5 Scatter plots of measured MVMs vs.
	Extended Data Fig. 6 Data distribution with and without model-driven chip calibration.
	Extended Data Fig. 7 Noise-resilient training of CNNs, LSTMs and RBMs.
	Extended Data Fig. 8 Measured chip inference performance.
	Extended Data Fig. 9 Implementation of various AI models.
	Extended Data Fig. 10 Chip-measured image recovery using RBM.
	Extended Data Fig. 11 NeuRRAM test system and chip micrographs at various scales.
	Extended Data Fig. 12 Energy consumption, latency, and throughput measurement results.
	Table 1 Summary of AI applications and models demonstrated on NeuRRAM.
	Extended Data Table 1 Comparison of fully integrated RRAM-based CIM hardware.
	Extended Data Table 2 Comparison with digital CMOS AI inference accelerators.

